Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispi Structured version   Visualization version   GIF version

Theorem wallispi 38963
Description: Wallis' formula for π : Wallis' product converges to π / 2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
wallispi.1 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
wallispi.2 𝑊 = (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛))
Assertion
Ref Expression
wallispi 𝑊 ⇝ (π / 2)
Distinct variable groups:   𝑘,𝑛   𝑛,𝐹
Allowed substitution hints:   𝐹(𝑘)   𝑊(𝑘,𝑛)

Proof of Theorem wallispi
Dummy variables 𝑗 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11599 . . . 4 ℕ = (ℤ‘1)
2 1zzd 11285 . . . 4 (⊤ → 1 ∈ ℤ)
3 wallispi.1 . . . . . . . 8 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
4 eqid 2610 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
5 eqid 2610 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘(2 · 𝑛)) / ((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ (((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘(2 · 𝑛)) / ((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘((2 · 𝑛) + 1))))
6 eqid 2610 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
7 eqid 2610 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛))) = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛)))
83, 4, 5, 6, 7wallispilem5 38962 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) ⇝ 1
98a1i 11 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) ⇝ 1)
10 2cnd 10970 . . . . . . 7 (⊤ → 2 ∈ ℂ)
11 picn 24015 . . . . . . . 8 π ∈ ℂ
1211a1i 11 . . . . . . 7 (⊤ → π ∈ ℂ)
13 pire 24014 . . . . . . . . 9 π ∈ ℝ
14 pipos 24016 . . . . . . . . 9 0 < π
1513, 14gt0ne0ii 10443 . . . . . . . 8 π ≠ 0
1615a1i 11 . . . . . . 7 (⊤ → π ≠ 0)
1710, 12, 16divcld 10680 . . . . . 6 (⊤ → (2 / π) ∈ ℂ)
18 nnex 10903 . . . . . . . 8 ℕ ∈ V
1918mptex 6390 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ∈ V
2019a1i 11 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ∈ V)
2111a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ → π ∈ ℂ)
2221halfcld 11154 . . . . . . . . . 10 (𝑛 ∈ ℕ → (π / 2) ∈ ℂ)
23 elnnuz 11600 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
2423biimpi 205 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
253a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))
26 oveq2 6557 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗))
2726oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → ((2 · 𝑘) − 1) = ((2 · 𝑗) − 1))
2826, 27oveq12d 6567 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((2 · 𝑘) / ((2 · 𝑘) − 1)) = ((2 · 𝑗) / ((2 · 𝑗) − 1)))
2926oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → ((2 · 𝑘) + 1) = ((2 · 𝑗) + 1))
3026, 29oveq12d 6567 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((2 · 𝑘) / ((2 · 𝑘) + 1)) = ((2 · 𝑗) / ((2 · 𝑗) + 1)))
3128, 30oveq12d 6567 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))))
3231adantl 481 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (1...𝑛) ∧ 𝑘 = 𝑗) → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))))
33 elfznn 12241 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℕ)
34 2cnd 10970 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 2 ∈ ℂ)
35 nncn 10905 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
3634, 35mulcld 9939 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℂ)
37 1cnd 9935 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 1 ∈ ℂ)
3836, 37subcld 10271 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ∈ ℂ)
39 1red 9934 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 1 ∈ ℝ)
40 1t1e1 11052 . . . . . . . . . . . . . . . . . . . . . 22 (1 · 1) = 1
4139, 39remulcld 9949 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (1 · 1) ∈ ℝ)
42 2re 10967 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 2 ∈ ℝ)
4443, 39remulcld 9949 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (2 · 1) ∈ ℝ)
45 nnre 10904 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
4643, 45remulcld 9949 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ)
47 1rp 11712 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℝ+
4847a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 1 ∈ ℝ+)
49 1lt2 11071 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 < 2
5049a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 1 < 2)
5139, 43, 48, 50ltmul1dd 11803 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (1 · 1) < (2 · 1))
52 0le2 10988 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ≤ 2
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 0 ≤ 2)
54 nnge1 10923 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 1 ≤ 𝑗)
5539, 45, 43, 53, 54lemul2ad 10843 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (2 · 1) ≤ (2 · 𝑗))
5641, 44, 46, 51, 55ltletrd 10076 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ → (1 · 1) < (2 · 𝑗))
5740, 56syl5eqbrr 4619 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 1 < (2 · 𝑗))
5839, 57gtned 10051 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → (2 · 𝑗) ≠ 1)
5936, 37, 58subne0d 10280 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ≠ 0)
6036, 38, 59divcld 10680 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((2 · 𝑗) / ((2 · 𝑗) − 1)) ∈ ℂ)
6136, 37addcld 9938 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ∈ ℂ)
62 0red 9920 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 0 ∈ ℝ)
6346, 39readdcld 9948 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ∈ ℝ)
6448rpgt0d 11751 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 0 < 1)
65 2rp 11713 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ+
6665a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → 2 ∈ ℝ+)
67 nnrp 11718 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
6866, 67rpmulcld 11764 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ+)
6939, 68ltaddrp2d 11782 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 1 < ((2 · 𝑗) + 1))
7062, 39, 63, 64, 69lttrd 10077 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 0 < ((2 · 𝑗) + 1))
7162, 70gtned 10051 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ≠ 0)
7236, 61, 71divcld 10680 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((2 · 𝑗) / ((2 · 𝑗) + 1)) ∈ ℂ)
7360, 72mulcld 9939 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈ ℂ)
7433, 73syl 17 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈ ℂ)
7525, 32, 33, 74fvmptd 6197 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑛) → (𝐹𝑗) = (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))))
7665a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → 2 ∈ ℝ+)
7733nnrpd 11746 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℝ+)
7876, 77rpmulcld 11764 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑛) → (2 · 𝑗) ∈ ℝ+)
7946, 39resubcld 10337 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ∈ ℝ)
80 1m1e0 10966 . . . . . . . . . . . . . . . . . . . 20 (1 − 1) = 0
8139, 46, 39, 57ltsub1dd 10518 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → (1 − 1) < ((2 · 𝑗) − 1))
8280, 81syl5eqbrr 4619 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → 0 < ((2 · 𝑗) − 1))
8379, 82elrpd 11745 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ∈ ℝ+)
8433, 83syl 17 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) − 1) ∈ ℝ+)
8578, 84rpdivcld 11765 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) / ((2 · 𝑗) − 1)) ∈ ℝ+)
8642a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 2 ∈ ℝ)
8733nnred 10912 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℝ)
8886, 87remulcld 9949 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → (2 · 𝑗) ∈ ℝ)
8976rpge0d 11752 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 0 ≤ 2)
9077rpge0d 11752 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 0 ≤ 𝑗)
9186, 87, 89, 90mulge0d 10483 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → 0 ≤ (2 · 𝑗))
9288, 91ge0p1rpd 11778 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) + 1) ∈ ℝ+)
9378, 92rpdivcld 11765 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) / ((2 · 𝑗) + 1)) ∈ ℝ+)
9485, 93rpmulcld 11764 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑛) → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈ ℝ+)
9575, 94eqeltrd 2688 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑛) → (𝐹𝑗) ∈ ℝ+)
9695adantl 481 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...𝑛)) → (𝐹𝑗) ∈ ℝ+)
97 rpmulcl 11731 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℝ+𝑤 ∈ ℝ+) → (𝑗 · 𝑤) ∈ ℝ+)
9897adantl 481 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ (𝑗 ∈ ℝ+𝑤 ∈ ℝ+)) → (𝑗 · 𝑤) ∈ ℝ+)
9924, 96, 98seqcl 12683 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (seq1( · , 𝐹)‘𝑛) ∈ ℝ+)
10099rpcnd 11750 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (seq1( · , 𝐹)‘𝑛) ∈ ℂ)
10199rpne0d 11753 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (seq1( · , 𝐹)‘𝑛) ≠ 0)
102100, 101reccld 10673 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑛)) ∈ ℂ)
10322, 102mulcld 9939 . . . . . . . . 9 (𝑛 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))) ∈ ℂ)
1046, 103fmpti 6291 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))):ℕ⟶ℂ
105104a1i 11 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))):ℕ⟶ℂ)
106105ffvelrnda 6267 . . . . . 6 ((⊤ ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗) ∈ ℂ)
107 fveq2 6103 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (seq1( · , 𝐹)‘𝑛) = (seq1( · , 𝐹)‘𝑗))
108107eleq1d 2672 . . . . . . . . . . . 12 (𝑛 = 𝑗 → ((seq1( · , 𝐹)‘𝑛) ∈ ℝ+ ↔ (seq1( · , 𝐹)‘𝑗) ∈ ℝ+))
109108, 99vtoclga 3245 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (seq1( · , 𝐹)‘𝑗) ∈ ℝ+)
110109rpcnd 11750 . . . . . . . . . 10 (𝑗 ∈ ℕ → (seq1( · , 𝐹)‘𝑗) ∈ ℂ)
111109rpne0d 11753 . . . . . . . . . 10 (𝑗 ∈ ℕ → (seq1( · , 𝐹)‘𝑗) ≠ 0)
11237, 110, 111divrecd 10683 . . . . . . . . 9 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) = (1 · (1 / (seq1( · , 𝐹)‘𝑗))))
11311a1i 11 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → π ∈ ℂ)
11466rpne0d 11753 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 2 ≠ 0)
11515a1i 11 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → π ≠ 0)
11634, 113, 114, 115divcan6d 10699 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((2 / π) · (π / 2)) = 1)
117116eqcomd 2616 . . . . . . . . . 10 (𝑗 ∈ ℕ → 1 = ((2 / π) · (π / 2)))
118117oveq1d 6564 . . . . . . . . 9 (𝑗 ∈ ℕ → (1 · (1 / (seq1( · , 𝐹)‘𝑗))) = (((2 / π) · (π / 2)) · (1 / (seq1( · , 𝐹)‘𝑗))))
11934, 113, 115divcld 10680 . . . . . . . . . 10 (𝑗 ∈ ℕ → (2 / π) ∈ ℂ)
120113halfcld 11154 . . . . . . . . . 10 (𝑗 ∈ ℕ → (π / 2) ∈ ℂ)
121110, 111reccld 10673 . . . . . . . . . 10 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) ∈ ℂ)
122119, 120, 121mulassd 9942 . . . . . . . . 9 (𝑗 ∈ ℕ → (((2 / π) · (π / 2)) · (1 / (seq1( · , 𝐹)‘𝑗))) = ((2 / π) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗)))))
123112, 118, 1223eqtrd 2648 . . . . . . . 8 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) = ((2 / π) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗)))))
124 eqidd 2611 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) = (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))))
125107oveq2d 6565 . . . . . . . . . 10 (𝑛 = 𝑗 → (1 / (seq1( · , 𝐹)‘𝑛)) = (1 / (seq1( · , 𝐹)‘𝑗)))
126125adantl 481 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (1 / (seq1( · , 𝐹)‘𝑛)) = (1 / (seq1( · , 𝐹)‘𝑗)))
127 id 22 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
128109rpreccld 11758 . . . . . . . . 9 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) ∈ ℝ+)
129124, 126, 127, 128fvmptd 6197 . . . . . . . 8 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = (1 / (seq1( · , 𝐹)‘𝑗)))
130 eqidd 2611 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))))
131126oveq2d 6565 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗))))
132120, 121mulcld 9939 . . . . . . . . . 10 (𝑗 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗))) ∈ ℂ)
133130, 131, 127, 132fvmptd 6197 . . . . . . . . 9 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗))))
134133oveq2d 6565 . . . . . . . 8 (𝑗 ∈ ℕ → ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)) = ((2 / π) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗)))))
135123, 129, 1343eqtr4d 2654 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)))
136135adantl 481 . . . . . 6 ((⊤ ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)))
1371, 2, 9, 17, 20, 106, 136climmulc2 14215 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ⇝ ((2 / π) · 1))
138 2cn 10968 . . . . . . 7 2 ∈ ℂ
139138, 11, 15divcli 10646 . . . . . 6 (2 / π) ∈ ℂ
140139mulid1i 9921 . . . . 5 ((2 / π) · 1) = (2 / π)
141137, 140syl6breq 4624 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ⇝ (2 / π))
142 2ne0 10990 . . . . . 6 2 ≠ 0
143138, 11, 142, 15divne0i 10652 . . . . 5 (2 / π) ≠ 0
144143a1i 11 . . . 4 (⊤ → (2 / π) ≠ 0)
145129, 121eqeltrd 2688 . . . . . 6 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ ℂ)
146110, 111recne0d 10674 . . . . . . . 8 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) ≠ 0)
147129, 146eqnetrd 2849 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ≠ 0)
148 nelsn 4159 . . . . . . 7 (((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ≠ 0 → ¬ ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ {0})
149147, 148syl 17 . . . . . 6 (𝑗 ∈ ℕ → ¬ ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ {0})
150145, 149eldifd 3551 . . . . 5 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ (ℂ ∖ {0}))
151150adantl 481 . . . 4 ((⊤ ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ (ℂ ∖ {0}))
152110, 111recrecd 10677 . . . . . 6 (𝑗 ∈ ℕ → (1 / (1 / (seq1( · , 𝐹)‘𝑗))) = (seq1( · , 𝐹)‘𝑗))
153124, 126, 127, 121fvmptd 6197 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = (1 / (seq1( · , 𝐹)‘𝑗)))
154153oveq2d 6565 . . . . . 6 (𝑗 ∈ ℕ → (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)) = (1 / (1 / (seq1( · , 𝐹)‘𝑗))))
155 wallispi.2 . . . . . . 7 𝑊 = (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛))
156107, 155, 99fvmpt3 6195 . . . . . 6 (𝑗 ∈ ℕ → (𝑊𝑗) = (seq1( · , 𝐹)‘𝑗))
157152, 154, 1563eqtr4rd 2655 . . . . 5 (𝑗 ∈ ℕ → (𝑊𝑗) = (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)))
158157adantl 481 . . . 4 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝑊𝑗) = (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)))
15918mptex 6390 . . . . . 6 (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛)) ∈ V
160155, 159eqeltri 2684 . . . . 5 𝑊 ∈ V
161160a1i 11 . . . 4 (⊤ → 𝑊 ∈ V)
1621, 2, 141, 144, 151, 158, 161climrec 38670 . . 3 (⊤ → 𝑊 ⇝ (1 / (2 / π)))
163162trud 1484 . 2 𝑊 ⇝ (1 / (2 / π))
164 recdiv 10610 . . 3 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (1 / (2 / π)) = (π / 2))
165138, 142, 11, 15, 164mp4an 705 . 2 (1 / (2 / π)) = (π / 2)
166163, 165breqtri 4608 1 𝑊 ⇝ (π / 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383   = wceq 1475  wtru 1476  wcel 1977  wne 2780  Vcvv 3173  cdif 3537  {csn 4125   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cuz 11563  +crp 11708  (,)cioo 12046  ...cfz 12197  seqcseq 12663  cexp 12722  cli 14063  sincsin 14633  πcpi 14636  citg 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-limc 23436  df-dv 23437
This theorem is referenced by:  wallispi2  38966
  Copyright terms: Public domain W3C validator