Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vtxduhgr0nedg Structured version   Visualization version   GIF version

Theorem vtxduhgr0nedg 40707
 Description: If a vertex in a hypergraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017.) (Revised by AV, 15-Dec-2020.) (Proof shortened by AV, 24-Dec-2020.)
Hypotheses
Ref Expression
vtxdushgrfvedg.v 𝑉 = (Vtx‘𝐺)
vtxdushgrfvedg.e 𝐸 = (Edg‘𝐺)
vtxdushgrfvedg.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxduhgr0nedg ((𝐺 ∈ UHGraph ∧ 𝑈𝑉 ∧ (𝐷𝑈) = 0) → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸)
Distinct variable groups:   𝑣,𝐺   𝑣,𝑈   𝑣,𝑉
Allowed substitution hints:   𝐷(𝑣)   𝐸(𝑣)

Proof of Theorem vtxduhgr0nedg
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 vtxdushgrfvedg.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 eqid 2610 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
3 vtxdushgrfvedg.d . . . . 5 𝐷 = (VtxDeg‘𝐺)
41, 2, 3vtxd0nedgb 40703 . . . 4 (𝑈𝑉 → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
54adantl 481 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
6 vtxdushgrfvedg.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
76eleq2i 2680 . . . . . . . 8 ({𝑈, 𝑣} ∈ 𝐸 ↔ {𝑈, 𝑣} ∈ (Edg‘𝐺))
82uhgredgiedgb 25799 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝑈, 𝑣} ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖)))
97, 8syl5bb 271 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝑈, 𝑣} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖)))
109adantr 480 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ({𝑈, 𝑣} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖)))
11 prid1g 4239 . . . . . . . . 9 (𝑈𝑉𝑈 ∈ {𝑈, 𝑣})
12 eleq2 2677 . . . . . . . . 9 ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → (𝑈 ∈ {𝑈, 𝑣} ↔ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1311, 12syl5ibcom 234 . . . . . . . 8 (𝑈𝑉 → ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1413adantl 481 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ({𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1514reximdv 2999 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑖 ∈ dom (iEdg‘𝐺){𝑈, 𝑣} = ((iEdg‘𝐺)‘𝑖) → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1610, 15sylbid 229 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ({𝑈, 𝑣} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1716rexlimdvw 3016 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸 → ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖)))
1817con3d 147 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (¬ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑈 ∈ ((iEdg‘𝐺)‘𝑖) → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸))
195, 18sylbid 229 . 2 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → ((𝐷𝑈) = 0 → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸))
20193impia 1253 1 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉 ∧ (𝐷𝑈) = 0) → ¬ ∃𝑣𝑉 {𝑈, 𝑣} ∈ 𝐸)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃wrex 2897  {cpr 4127  dom cdm 5038  ‘cfv 5804  0cc0 9815  Vtxcvtx 25673  iEdgciedg 25674   UHGraph cuhgr 25722  Edgcedga 25792  VtxDegcvtxdg 40681 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-xadd 11823  df-fz 12198  df-hash 12980  df-uhgr 25724  df-edga 25793  df-vtxdg 40682 This theorem is referenced by:  vtxdumgr0nedg  40708
 Copyright terms: Public domain W3C validator