Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volioc Structured version   Visualization version   GIF version

Theorem volioc 38864
Description: The measure of left open, right closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
volioc ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))

Proof of Theorem volioc
StepHypRef Expression
1 vol0 38851 . . . 4 (vol‘∅) = 0
2 oveq2 6557 . . . . . . 7 (𝐴 = 𝐵 → (𝐴(,]𝐴) = (𝐴(,]𝐵))
32eqcomd 2616 . . . . . 6 (𝐴 = 𝐵 → (𝐴(,]𝐵) = (𝐴(,]𝐴))
4 leid 10012 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴𝐴)
5 rexr 9964 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
6 ioc0 12093 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*) → ((𝐴(,]𝐴) = ∅ ↔ 𝐴𝐴))
75, 5, 6syl2anc 691 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴(,]𝐴) = ∅ ↔ 𝐴𝐴))
84, 7mpbird 246 . . . . . 6 (𝐴 ∈ ℝ → (𝐴(,]𝐴) = ∅)
93, 8sylan9eqr 2666 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (𝐴(,]𝐵) = ∅)
109fveq2d 6107 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (vol‘∅))
11 eqcom 2617 . . . . . . . 8 (𝐴 = 𝐵𝐵 = 𝐴)
1211biimpi 205 . . . . . . 7 (𝐴 = 𝐵𝐵 = 𝐴)
1312adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐵 = 𝐴)
14 recn 9905 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1514adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ∈ ℂ)
1613, 15eqeltrd 2688 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐵 ∈ ℂ)
1716, 13subeq0bd 10335 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (𝐵𝐴) = 0)
181, 10, 173eqtr4a 2670 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))
19183ad2antl1 1216 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))
20 simpl1 1057 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ ℝ)
21 simpl2 1058 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ ℝ)
22 simpl3 1059 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐵)
23 eqcom 2617 . . . . . . 7 (𝐵 = 𝐴𝐴 = 𝐵)
2423biimpi 205 . . . . . 6 (𝐵 = 𝐴𝐴 = 𝐵)
2524necon3bi 2808 . . . . 5 𝐴 = 𝐵𝐵𝐴)
2625adantl 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐴)
2720, 21, 22, 26leneltd 10070 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → 𝐴 < 𝐵)
2853ad2ant1 1075 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
29 rexr 9964 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
30293ad2ant2 1076 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
31 simp3 1056 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
32 snunioo2 38578 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
3328, 30, 31, 32syl3anc 1318 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
3433eqcomd 2616 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐵}))
3534fveq2d 6107 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,]𝐵)) = (vol‘((𝐴(,)𝐵) ∪ {𝐵})))
36 ioombl 23140 . . . . . 6 (𝐴(,)𝐵) ∈ dom vol
3736a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,)𝐵) ∈ dom vol)
38 snmbl 38855 . . . . . 6 (𝐵 ∈ ℝ → {𝐵} ∈ dom vol)
39383ad2ant2 1076 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → {𝐵} ∈ dom vol)
40 ubioo 12078 . . . . . . 7 ¬ 𝐵 ∈ (𝐴(,)𝐵)
41 disjsn 4192 . . . . . . 7 (((𝐴(,)𝐵) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (𝐴(,)𝐵))
4240, 41mpbir 220 . . . . . 6 ((𝐴(,)𝐵) ∩ {𝐵}) = ∅
4342a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∩ {𝐵}) = ∅)
44 ioovolcl 23144 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
45443adant3 1074 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
46 volsn 38859 . . . . . . 7 (𝐵 ∈ ℝ → (vol‘{𝐵}) = 0)
47 0red 9920 . . . . . . 7 (𝐵 ∈ ℝ → 0 ∈ ℝ)
4846, 47eqeltrd 2688 . . . . . 6 (𝐵 ∈ ℝ → (vol‘{𝐵}) ∈ ℝ)
49483ad2ant2 1076 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘{𝐵}) ∈ ℝ)
50 volun 23120 . . . . 5 ((((𝐴(,)𝐵) ∈ dom vol ∧ {𝐵} ∈ dom vol ∧ ((𝐴(,)𝐵) ∩ {𝐵}) = ∅) ∧ ((vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ (vol‘{𝐵}) ∈ ℝ)) → (vol‘((𝐴(,)𝐵) ∪ {𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵})))
5137, 39, 43, 45, 49, 50syl32anc 1326 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐵})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵})))
52 simp1 1054 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
53 simp2 1055 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
5452, 53, 31ltled 10064 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴𝐵)
55 volioo 38840 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
5652, 53, 54, 55syl3anc 1318 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
57463ad2ant2 1076 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘{𝐵}) = 0)
5856, 57oveq12d 6567 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵})) = ((𝐵𝐴) + 0))
5953recnd 9947 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
60143ad2ant1 1075 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
6159, 60subcld 10271 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℂ)
6261addid1d 10115 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐵𝐴) + 0) = (𝐵𝐴))
6358, 62eqtrd 2644 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐵})) = (𝐵𝐴))
6435, 51, 633eqtrd 2648 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))
6520, 21, 27, 64syl3anc 1318 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ ¬ 𝐴 = 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))
6619, 65pm2.61dan 828 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cun 3538  cin 3539  c0 3874  {csn 4125   class class class wbr 4583  dom cdm 5038  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   + caddc 9818  *cxr 9952   < clt 9953  cle 9954  cmin 10145  (,)cioo 12046  (,]cioc 12047  volcvol 23039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator