MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem10 Structured version   Visualization version   GIF version

Theorem vdwlem10 15532
Description: Lemma for vdw 15536. Set up secondary induction on 𝑀. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem9.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem9.s (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
vdwlem10.m (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
vdwlem10 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
Distinct variable groups:   𝜑,𝑛,𝑓   𝑓,𝑠,𝐾,𝑛   𝑓,𝑀,𝑛   𝑅,𝑓,𝑛,𝑠   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑠)   𝑀(𝑠)

Proof of Theorem vdwlem10
Dummy variables 𝑎 𝑐 𝑑 𝑔 𝑘 𝑚 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwlem10.m . 2 (𝜑𝑀 ∈ ℕ)
2 opeq1 4340 . . . . . . 7 (𝑥 = 1 → ⟨𝑥, 𝐾⟩ = ⟨1, 𝐾⟩)
32breq1d 4593 . . . . . 6 (𝑥 = 1 → (⟨𝑥, 𝐾⟩ PolyAP 𝑓 ↔ ⟨1, 𝐾⟩ PolyAP 𝑓))
43orbi1d 735 . . . . 5 (𝑥 = 1 → ((⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
54rexralbidv 3040 . . . 4 (𝑥 = 1 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
65imbi2d 329 . . 3 (𝑥 = 1 → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
7 opeq1 4340 . . . . . . 7 (𝑥 = 𝑚 → ⟨𝑥, 𝐾⟩ = ⟨𝑚, 𝐾⟩)
87breq1d 4593 . . . . . 6 (𝑥 = 𝑚 → (⟨𝑥, 𝐾⟩ PolyAP 𝑓 ↔ ⟨𝑚, 𝐾⟩ PolyAP 𝑓))
98orbi1d 735 . . . . 5 (𝑥 = 𝑚 → ((⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
109rexralbidv 3040 . . . 4 (𝑥 = 𝑚 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
1110imbi2d 329 . . 3 (𝑥 = 𝑚 → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
12 opeq1 4340 . . . . . . 7 (𝑥 = (𝑚 + 1) → ⟨𝑥, 𝐾⟩ = ⟨(𝑚 + 1), 𝐾⟩)
1312breq1d 4593 . . . . . 6 (𝑥 = (𝑚 + 1) → (⟨𝑥, 𝐾⟩ PolyAP 𝑓 ↔ ⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓))
1413orbi1d 735 . . . . 5 (𝑥 = (𝑚 + 1) → ((⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
1514rexralbidv 3040 . . . 4 (𝑥 = (𝑚 + 1) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
1615imbi2d 329 . . 3 (𝑥 = (𝑚 + 1) → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
17 opeq1 4340 . . . . . . 7 (𝑥 = 𝑀 → ⟨𝑥, 𝐾⟩ = ⟨𝑀, 𝐾⟩)
1817breq1d 4593 . . . . . 6 (𝑥 = 𝑀 → (⟨𝑥, 𝐾⟩ PolyAP 𝑓 ↔ ⟨𝑀, 𝐾⟩ PolyAP 𝑓))
1918orbi1d 735 . . . . 5 (𝑥 = 𝑀 → ((⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
2019rexralbidv 3040 . . . 4 (𝑥 = 𝑀 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
2120imbi2d 329 . . 3 (𝑥 = 𝑀 → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑥, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) ↔ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
22 vdw.r . . . . . 6 (𝜑𝑅 ∈ Fin)
23 vdwlem9.s . . . . . 6 (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
24 oveq1 6556 . . . . . . . . 9 (𝑠 = 𝑅 → (𝑠𝑚 (1...𝑛)) = (𝑅𝑚 (1...𝑛)))
2524raleqdv 3121 . . . . . . . 8 (𝑠 = 𝑅 → (∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓))
2625rexbidv 3034 . . . . . . 7 (𝑠 = 𝑅 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓))
2726rspcv 3278 . . . . . 6 (𝑅 ∈ Fin → (∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓))
2822, 23, 27sylc 63 . . . . 5 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
29 oveq2 6557 . . . . . . . 8 (𝑛 = 𝑤 → (1...𝑛) = (1...𝑤))
3029oveq2d 6565 . . . . . . 7 (𝑛 = 𝑤 → (𝑅𝑚 (1...𝑛)) = (𝑅𝑚 (1...𝑤)))
3130raleqdv 3121 . . . . . 6 (𝑛 = 𝑤 → (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅𝑚 (1...𝑤))𝐾 MonoAP 𝑓))
3231cbvrexv 3148 . . . . 5 (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑤 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑤))𝐾 MonoAP 𝑓)
3328, 32sylib 207 . . . 4 (𝜑 → ∃𝑤 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑤))𝐾 MonoAP 𝑓)
34 breq2 4587 . . . . . . 7 (𝑓 = 𝑔 → (𝐾 MonoAP 𝑓𝐾 MonoAP 𝑔))
3534cbvralv 3147 . . . . . 6 (∀𝑓 ∈ (𝑅𝑚 (1...𝑤))𝐾 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))𝐾 MonoAP 𝑔)
36 2nn 11062 . . . . . . . 8 2 ∈ ℕ
37 simpr 476 . . . . . . . 8 ((𝜑𝑤 ∈ ℕ) → 𝑤 ∈ ℕ)
38 nnmulcl 10920 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (2 · 𝑤) ∈ ℕ)
3936, 37, 38sylancr 694 . . . . . . 7 ((𝜑𝑤 ∈ ℕ) → (2 · 𝑤) ∈ ℕ)
4022adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℕ) → 𝑅 ∈ Fin)
41 ovex 6577 . . . . . . . . . . 11 (1...(2 · 𝑤)) ∈ V
42 elmapg 7757 . . . . . . . . . . 11 ((𝑅 ∈ Fin ∧ (1...(2 · 𝑤)) ∈ V) → (𝑓 ∈ (𝑅𝑚 (1...(2 · 𝑤))) ↔ 𝑓:(1...(2 · 𝑤))⟶𝑅))
4340, 41, 42sylancl 693 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℕ) → (𝑓 ∈ (𝑅𝑚 (1...(2 · 𝑤))) ↔ 𝑓:(1...(2 · 𝑤))⟶𝑅))
4443biimpa 500 . . . . . . . . 9 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓 ∈ (𝑅𝑚 (1...(2 · 𝑤)))) → 𝑓:(1...(2 · 𝑤))⟶𝑅)
45 simplr 788 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑓:(1...(2 · 𝑤))⟶𝑅)
46 elfznn 12241 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1...𝑤) → 𝑦 ∈ ℕ)
4746adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑦 ∈ ℕ)
4847nnred 10912 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑦 ∈ ℝ)
49 simpllr 795 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑤 ∈ ℕ)
5049nnred 10912 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑤 ∈ ℝ)
51 elfzle2 12216 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1...𝑤) → 𝑦𝑤)
5251adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑦𝑤)
5348, 50, 50, 52leadd1dd 10520 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ≤ (𝑤 + 𝑤))
5449nncnd 10913 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → 𝑤 ∈ ℂ)
55542timesd 11152 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (2 · 𝑤) = (𝑤 + 𝑤))
5653, 55breqtrrd 4611 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ≤ (2 · 𝑤))
5747, 49nnaddcld 10944 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ∈ ℕ)
58 nnuz 11599 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
5957, 58syl6eleq 2698 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ∈ (ℤ‘1))
6039ad2antrr 758 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (2 · 𝑤) ∈ ℕ)
6160nnzd 11357 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (2 · 𝑤) ∈ ℤ)
62 elfz5 12205 . . . . . . . . . . . . . . . 16 (((𝑦 + 𝑤) ∈ (ℤ‘1) ∧ (2 · 𝑤) ∈ ℤ) → ((𝑦 + 𝑤) ∈ (1...(2 · 𝑤)) ↔ (𝑦 + 𝑤) ≤ (2 · 𝑤)))
6359, 61, 62syl2anc 691 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → ((𝑦 + 𝑤) ∈ (1...(2 · 𝑤)) ↔ (𝑦 + 𝑤) ≤ (2 · 𝑤)))
6456, 63mpbird 246 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑦 + 𝑤) ∈ (1...(2 · 𝑤)))
6545, 64ffvelrnd 6268 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ 𝑦 ∈ (1...𝑤)) → (𝑓‘(𝑦 + 𝑤)) ∈ 𝑅)
66 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥 + 𝑤) = (𝑦 + 𝑤))
6766fveq2d 6107 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑓‘(𝑥 + 𝑤)) = (𝑓‘(𝑦 + 𝑤)))
6867cbvmptv 4678 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) = (𝑦 ∈ (1...𝑤) ↦ (𝑓‘(𝑦 + 𝑤)))
6965, 68fmptd 6292 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅)
70 ovex 6577 . . . . . . . . . . . . . 14 (1...𝑤) ∈ V
71 elmapg 7757 . . . . . . . . . . . . . 14 ((𝑅 ∈ Fin ∧ (1...𝑤) ∈ V) → ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅𝑚 (1...𝑤)) ↔ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅))
7240, 70, 71sylancl 693 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ℕ) → ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅𝑚 (1...𝑤)) ↔ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅))
7372biimpar 501 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℕ) ∧ (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))):(1...𝑤)⟶𝑅) → (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅𝑚 (1...𝑤)))
7469, 73syldan 486 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅𝑚 (1...𝑤)))
75 breq2 4587 . . . . . . . . . . . 12 (𝑔 = (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) → (𝐾 MonoAP 𝑔𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤)))))
7675rspcv 3278 . . . . . . . . . . 11 ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ∈ (𝑅𝑚 (1...𝑤)) → (∀𝑔 ∈ (𝑅𝑚 (1...𝑤))𝐾 MonoAP 𝑔𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤)))))
7774, 76syl 17 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∀𝑔 ∈ (𝑅𝑚 (1...𝑤))𝐾 MonoAP 𝑔𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤)))))
78 2nn0 11186 . . . . . . . . . . . . 13 2 ∈ ℕ0
79 vdwlem9.k . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ (ℤ‘2))
8079ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → 𝐾 ∈ (ℤ‘2))
81 eluznn0 11633 . . . . . . . . . . . . 13 ((2 ∈ ℕ0𝐾 ∈ (ℤ‘2)) → 𝐾 ∈ ℕ0)
8278, 80, 81sylancr 694 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → 𝐾 ∈ ℕ0)
8370, 82, 69vdwmc 15520 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐})))
8440ad2antrr 758 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑅 ∈ Fin)
8580adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝐾 ∈ (ℤ‘2))
86 simpllr 795 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑤 ∈ ℕ)
87 simplr 788 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑓:(1...(2 · 𝑤))⟶𝑅)
88 vex 3176 . . . . . . . . . . . . . . . 16 𝑐 ∈ V
89 simprll 798 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑎 ∈ ℕ)
90 simprlr 799 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → 𝑑 ∈ ℕ)
91 simprr 792 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))
9284, 85, 86, 87, 88, 89, 90, 91, 68vdwlem8 15530 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → ⟨1, 𝐾⟩ PolyAP 𝑓)
9392orcd 406 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}))) → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
9493expr 641 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}) → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9594rexlimdvva 3020 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}) → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9695exlimdv 1848 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ ((𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) “ {𝑐}) → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9783, 96sylbid 229 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (𝐾 MonoAP (𝑥 ∈ (1...𝑤) ↦ (𝑓‘(𝑥 + 𝑤))) → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9877, 97syld 46 . . . . . . . . 9 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓:(1...(2 · 𝑤))⟶𝑅) → (∀𝑔 ∈ (𝑅𝑚 (1...𝑤))𝐾 MonoAP 𝑔 → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
9944, 98syldan 486 . . . . . . . 8 (((𝜑𝑤 ∈ ℕ) ∧ 𝑓 ∈ (𝑅𝑚 (1...(2 · 𝑤)))) → (∀𝑔 ∈ (𝑅𝑚 (1...𝑤))𝐾 MonoAP 𝑔 → (⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
10099ralrimdva 2952 . . . . . . 7 ((𝜑𝑤 ∈ ℕ) → (∀𝑔 ∈ (𝑅𝑚 (1...𝑤))𝐾 MonoAP 𝑔 → ∀𝑓 ∈ (𝑅𝑚 (1...(2 · 𝑤)))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
101 oveq2 6557 . . . . . . . . . 10 (𝑛 = (2 · 𝑤) → (1...𝑛) = (1...(2 · 𝑤)))
102101oveq2d 6565 . . . . . . . . 9 (𝑛 = (2 · 𝑤) → (𝑅𝑚 (1...𝑛)) = (𝑅𝑚 (1...(2 · 𝑤))))
103102raleqdv 3121 . . . . . . . 8 (𝑛 = (2 · 𝑤) → (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑓 ∈ (𝑅𝑚 (1...(2 · 𝑤)))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
104103rspcev 3282 . . . . . . 7 (((2 · 𝑤) ∈ ℕ ∧ ∀𝑓 ∈ (𝑅𝑚 (1...(2 · 𝑤)))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
10539, 100, 104syl6an 566 . . . . . 6 ((𝜑𝑤 ∈ ℕ) → (∀𝑔 ∈ (𝑅𝑚 (1...𝑤))𝐾 MonoAP 𝑔 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
10635, 105syl5bi 231 . . . . 5 ((𝜑𝑤 ∈ ℕ) → (∀𝑓 ∈ (𝑅𝑚 (1...𝑤))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
107106rexlimdva 3013 . . . 4 (𝜑 → (∃𝑤 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑤))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
10833, 107mpd 15 . . 3 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨1, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
109 breq2 4587 . . . . . . . . . 10 (𝑓 = 𝑔 → (⟨𝑚, 𝐾⟩ PolyAP 𝑓 ↔ ⟨𝑚, 𝐾⟩ PolyAP 𝑔))
110 breq2 4587 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝐾 + 1) MonoAP 𝑓 ↔ (𝐾 + 1) MonoAP 𝑔))
111109, 110orbi12d 742 . . . . . . . . 9 (𝑓 = 𝑔 → ((⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)))
112111cbvralv 3147 . . . . . . . 8 (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑔 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
11330raleqdv 3121 . . . . . . . 8 (𝑛 = 𝑤 → (∀𝑔 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) ↔ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)))
114112, 113syl5bb 271 . . . . . . 7 (𝑛 = 𝑤 → (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)))
115114cbvrexv 3148 . . . . . 6 (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∃𝑤 ∈ ℕ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
11622ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → 𝑅 ∈ Fin)
117 fzfi 12633 . . . . . . . . . 10 (1...𝑤) ∈ Fin
118 mapfi 8145 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ (1...𝑤) ∈ Fin) → (𝑅𝑚 (1...𝑤)) ∈ Fin)
119116, 117, 118sylancl 693 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → (𝑅𝑚 (1...𝑤)) ∈ Fin)
12023ad2antrr 758 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
121 oveq2 6557 . . . . . . . . . . . . . 14 (𝑛 = 𝑣 → (1...𝑛) = (1...𝑣))
122121oveq2d 6565 . . . . . . . . . . . . 13 (𝑛 = 𝑣 → (𝑠𝑚 (1...𝑛)) = (𝑠𝑚 (1...𝑣)))
123122raleqdv 3121 . . . . . . . . . . . 12 (𝑛 = 𝑣 → (∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠𝑚 (1...𝑣))𝐾 MonoAP 𝑓))
124123cbvrexv 3148 . . . . . . . . . . 11 (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑣 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑣))𝐾 MonoAP 𝑓)
125 oveq1 6556 . . . . . . . . . . . . 13 (𝑠 = (𝑅𝑚 (1...𝑤)) → (𝑠𝑚 (1...𝑣)) = ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣)))
126125raleqdv 3121 . . . . . . . . . . . 12 (𝑠 = (𝑅𝑚 (1...𝑤)) → (∀𝑓 ∈ (𝑠𝑚 (1...𝑣))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓))
127126rexbidv 3034 . . . . . . . . . . 11 (𝑠 = (𝑅𝑚 (1...𝑤)) → (∃𝑣 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑣))𝐾 MonoAP 𝑓 ↔ ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓))
128124, 127syl5bb 271 . . . . . . . . . 10 (𝑠 = (𝑅𝑚 (1...𝑤)) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓))
129128rspcv 3278 . . . . . . . . 9 ((𝑅𝑚 (1...𝑤)) ∈ Fin → (∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓 → ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓))
130119, 120, 129sylc 63 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → ∃𝑣 ∈ ℕ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)
131 simprll 798 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓))) → 𝑤 ∈ ℕ)
132 simprrl 800 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓))) → 𝑣 ∈ ℕ)
133 nnmulcl 10920 . . . . . . . . . . . . 13 ((2 ∈ ℕ ∧ 𝑣 ∈ ℕ) → (2 · 𝑣) ∈ ℕ)
13436, 133mpan 702 . . . . . . . . . . . 12 (𝑣 ∈ ℕ → (2 · 𝑣) ∈ ℕ)
135 nnmulcl 10920 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ ∧ (2 · 𝑣) ∈ ℕ) → (𝑤 · (2 · 𝑣)) ∈ ℕ)
136134, 135sylan2 490 . . . . . . . . . . 11 ((𝑤 ∈ ℕ ∧ 𝑣 ∈ ℕ) → (𝑤 · (2 · 𝑣)) ∈ ℕ)
137131, 132, 136syl2anc 691 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓))) → (𝑤 · (2 · 𝑣)) ∈ ℕ)
138 simp1l 1078 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))) → 𝜑)
139138, 22syl 17 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))) → 𝑅 ∈ Fin)
140138, 79syl 17 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))) → 𝐾 ∈ (ℤ‘2))
141138, 23syl 17 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
142 simp1r 1079 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))) → 𝑚 ∈ ℕ)
143 simp2ll 1121 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))) → 𝑤 ∈ ℕ)
144 simp2lr 1122 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))) → ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
145 breq2 4587 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑘 → (⟨𝑚, 𝐾⟩ PolyAP 𝑔 ↔ ⟨𝑚, 𝐾⟩ PolyAP 𝑘))
146 breq2 4587 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑘 → ((𝐾 + 1) MonoAP 𝑔 ↔ (𝐾 + 1) MonoAP 𝑘))
147145, 146orbi12d 742 . . . . . . . . . . . . . . 15 (𝑔 = 𝑘 → ((⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) ↔ (⟨𝑚, 𝐾⟩ PolyAP 𝑘 ∨ (𝐾 + 1) MonoAP 𝑘)))
148147cbvralv 3147 . . . . . . . . . . . . . 14 (∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) ↔ ∀𝑘 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑘 ∨ (𝐾 + 1) MonoAP 𝑘))
149144, 148sylib 207 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))) → ∀𝑘 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑘 ∨ (𝐾 + 1) MonoAP 𝑘))
150 simp2rl 1123 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))) → 𝑣 ∈ ℕ)
151 simp2rr 1124 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))) → ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)
152 simp3 1056 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))) → ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣)))))
153 ovex 6577 . . . . . . . . . . . . . . 15 (1...(𝑤 · (2 · 𝑣))) ∈ V
154 elmapg 7757 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Fin ∧ (1...(𝑤 · (2 · 𝑣))) ∈ V) → ( ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣)))) ↔ :(1...(𝑤 · (2 · 𝑣)))⟶𝑅))
155139, 153, 154sylancl 693 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))) → ( ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣)))) ↔ :(1...(𝑤 · (2 · 𝑣)))⟶𝑅))
156152, 155mpbid 221 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))) → :(1...(𝑤 · (2 · 𝑣)))⟶𝑅)
157 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → (𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣))) = (𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣))))
158157fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣)))) = (‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣)))))
159158cbvmptv 4678 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1...𝑤) ↦ (‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣))))) = (𝑢 ∈ (1...𝑤) ↦ (‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣)))))
160 oveq1 6556 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (𝑥 − 1) = (𝑧 − 1))
161160oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → ((𝑥 − 1) + 𝑣) = ((𝑧 − 1) + 𝑣))
162161oveq2d 6565 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝑤 · ((𝑥 − 1) + 𝑣)) = (𝑤 · ((𝑧 − 1) + 𝑣)))
163162oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣))) = (𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣))))
164163fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣)))) = (‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣)))))
165164mpteq2dv 4673 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑢 ∈ (1...𝑤) ↦ (‘(𝑢 + (𝑤 · ((𝑥 − 1) + 𝑣))))) = (𝑢 ∈ (1...𝑤) ↦ (‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣))))))
166159, 165syl5eq 2656 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑦 ∈ (1...𝑤) ↦ (‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣))))) = (𝑢 ∈ (1...𝑤) ↦ (‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣))))))
167166cbvmptv 4678 . . . . . . . . . . . . 13 (𝑥 ∈ (1...𝑣) ↦ (𝑦 ∈ (1...𝑤) ↦ (‘(𝑦 + (𝑤 · ((𝑥 − 1) + 𝑣)))))) = (𝑧 ∈ (1...𝑣) ↦ (𝑢 ∈ (1...𝑤) ↦ (‘(𝑢 + (𝑤 · ((𝑧 − 1) + 𝑣))))))
168139, 140, 141, 142, 143, 149, 150, 151, 156, 167vdwlem9 15531 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)) ∧ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))) → (⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP ))
1691683expia 1259 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓))) → ( ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣)))) → (⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP )))
170169ralrimiv 2948 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓))) → ∀ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP ))
171 oveq2 6557 . . . . . . . . . . . . . 14 (𝑛 = (𝑤 · (2 · 𝑣)) → (1...𝑛) = (1...(𝑤 · (2 · 𝑣))))
172171oveq2d 6565 . . . . . . . . . . . . 13 (𝑛 = (𝑤 · (2 · 𝑣)) → (𝑅𝑚 (1...𝑛)) = (𝑅𝑚 (1...(𝑤 · (2 · 𝑣)))))
173172raleqdv 3121 . . . . . . . . . . . 12 (𝑛 = (𝑤 · (2 · 𝑣)) → (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀𝑓 ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
174 breq2 4587 . . . . . . . . . . . . . 14 (𝑓 = → (⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ↔ ⟨(𝑚 + 1), 𝐾⟩ PolyAP ))
175 breq2 4587 . . . . . . . . . . . . . 14 (𝑓 = → ((𝐾 + 1) MonoAP 𝑓 ↔ (𝐾 + 1) MonoAP ))
176174, 175orbi12d 742 . . . . . . . . . . . . 13 (𝑓 = → ((⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ (⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP )))
177176cbvralv 3147 . . . . . . . . . . . 12 (∀𝑓 ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP ))
178173, 177syl6bb 275 . . . . . . . . . . 11 (𝑛 = (𝑤 · (2 · 𝑣)) → (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) ↔ ∀ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP )))
179178rspcev 3282 . . . . . . . . . 10 (((𝑤 · (2 · 𝑣)) ∈ ℕ ∧ ∀ ∈ (𝑅𝑚 (1...(𝑤 · (2 · 𝑣))))(⟨(𝑚 + 1), 𝐾⟩ PolyAP ∨ (𝐾 + 1) MonoAP )) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
180137, 170, 179syl2anc 691 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ ((𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓))) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
181180anassrs 678 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) ∧ (𝑣 ∈ ℕ ∧ ∀𝑓 ∈ ((𝑅𝑚 (1...𝑤)) ↑𝑚 (1...𝑣))𝐾 MonoAP 𝑓)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
182130, 181rexlimddv 3017 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ (𝑤 ∈ ℕ ∧ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
183182rexlimdvaa 3014 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (∃𝑤 ∈ ℕ ∀𝑔 ∈ (𝑅𝑚 (1...𝑤))(⟨𝑚, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
184115, 183syl5bi 231 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
185184expcom 450 . . . 4 (𝑚 ∈ ℕ → (𝜑 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
186185a2d 29 . . 3 (𝑚 ∈ ℕ → ((𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑚, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)) → (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨(𝑚 + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))))
1876, 11, 16, 21, 108, 186nnind 10915 . 2 (𝑀 ∈ ℕ → (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
1881, 187mpcom 37 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨𝑀, 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  wss 3540  {csn 4125  cop 4131   class class class wbr 4583  cmpt 4643  ccnv 5037  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  APcvdwa 15507   MonoAP cvdwm 15508   PolyAP cvdwp 15509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-hash 12980  df-vdwap 15510  df-vdwmc 15511  df-vdwpc 15512
This theorem is referenced by:  vdwlem11  15533
  Copyright terms: Public domain W3C validator