Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vdiscusgra | Structured version Visualization version GIF version |
Description: In a finite complete undirected simple graph with n vertices every vertex has degree 𝑛 − 1. (Contributed by Alexander van der Vekens, 14-Jul-2018.) |
Ref | Expression |
---|---|
vdiscusgra | ⊢ ((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) → (∀𝑣 ∈ 𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1) → 𝑉 ComplUSGrph 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvtxisvtx 26018 | . . . . 5 ⊢ (𝑛 ∈ (𝑉 UnivVertex 𝐸) → 𝑛 ∈ 𝑉) | |
2 | fveq2 6103 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑛 → ((𝑉 VDeg 𝐸)‘𝑣) = ((𝑉 VDeg 𝐸)‘𝑛)) | |
3 | 2 | eqeq1d 2612 | . . . . . . . . . 10 ⊢ (𝑣 = 𝑛 → (((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1) ↔ ((𝑉 VDeg 𝐸)‘𝑛) = ((#‘𝑉) − 1))) |
4 | 3 | rspccv 3279 | . . . . . . . . 9 ⊢ (∀𝑣 ∈ 𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1) → (𝑛 ∈ 𝑉 → ((𝑉 VDeg 𝐸)‘𝑛) = ((#‘𝑉) − 1))) |
5 | 4 | adantl 481 | . . . . . . . 8 ⊢ (((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) ∧ ∀𝑣 ∈ 𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1)) → (𝑛 ∈ 𝑉 → ((𝑉 VDeg 𝐸)‘𝑛) = ((#‘𝑉) − 1))) |
6 | 5 | imp 444 | . . . . . . 7 ⊢ ((((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) ∧ ∀𝑣 ∈ 𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1)) ∧ 𝑛 ∈ 𝑉) → ((𝑉 VDeg 𝐸)‘𝑛) = ((#‘𝑉) − 1)) |
7 | simplll 794 | . . . . . . . 8 ⊢ ((((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) ∧ ∀𝑣 ∈ 𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1)) ∧ 𝑛 ∈ 𝑉) → 𝑉 USGrph 𝐸) | |
8 | simpr 476 | . . . . . . . . 9 ⊢ ((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) → 𝑉 ∈ Fin) | |
9 | 8 | ad2antrr 758 | . . . . . . . 8 ⊢ ((((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) ∧ ∀𝑣 ∈ 𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1)) ∧ 𝑛 ∈ 𝑉) → 𝑉 ∈ Fin) |
10 | simpr 476 | . . . . . . . 8 ⊢ ((((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) ∧ ∀𝑣 ∈ 𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1)) ∧ 𝑛 ∈ 𝑉) → 𝑛 ∈ 𝑉) | |
11 | usgrauvtxvdbi 26447 | . . . . . . . 8 ⊢ ((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin ∧ 𝑛 ∈ 𝑉) → (𝑛 ∈ (𝑉 UnivVertex 𝐸) ↔ ((𝑉 VDeg 𝐸)‘𝑛) = ((#‘𝑉) − 1))) | |
12 | 7, 9, 10, 11 | syl3anc 1318 | . . . . . . 7 ⊢ ((((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) ∧ ∀𝑣 ∈ 𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1)) ∧ 𝑛 ∈ 𝑉) → (𝑛 ∈ (𝑉 UnivVertex 𝐸) ↔ ((𝑉 VDeg 𝐸)‘𝑛) = ((#‘𝑉) − 1))) |
13 | 6, 12 | mpbird 246 | . . . . . 6 ⊢ ((((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) ∧ ∀𝑣 ∈ 𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1)) ∧ 𝑛 ∈ 𝑉) → 𝑛 ∈ (𝑉 UnivVertex 𝐸)) |
14 | 13 | ex 449 | . . . . 5 ⊢ (((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) ∧ ∀𝑣 ∈ 𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1)) → (𝑛 ∈ 𝑉 → 𝑛 ∈ (𝑉 UnivVertex 𝐸))) |
15 | 1, 14 | impbid2 215 | . . . 4 ⊢ (((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) ∧ ∀𝑣 ∈ 𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1)) → (𝑛 ∈ (𝑉 UnivVertex 𝐸) ↔ 𝑛 ∈ 𝑉)) |
16 | 15 | eqrdv 2608 | . . 3 ⊢ (((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) ∧ ∀𝑣 ∈ 𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1)) → (𝑉 UnivVertex 𝐸) = 𝑉) |
17 | cusgrauvtxb 26024 | . . . 4 ⊢ (𝑉 USGrph 𝐸 → (𝑉 ComplUSGrph 𝐸 ↔ (𝑉 UnivVertex 𝐸) = 𝑉)) | |
18 | 17 | ad2antrr 758 | . . 3 ⊢ (((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) ∧ ∀𝑣 ∈ 𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1)) → (𝑉 ComplUSGrph 𝐸 ↔ (𝑉 UnivVertex 𝐸) = 𝑉)) |
19 | 16, 18 | mpbird 246 | . 2 ⊢ (((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) ∧ ∀𝑣 ∈ 𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1)) → 𝑉 ComplUSGrph 𝐸) |
20 | 19 | ex 449 | 1 ⊢ ((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) → (∀𝑣 ∈ 𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = ((#‘𝑉) − 1) → 𝑉 ComplUSGrph 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 Fincfn 7841 1c1 9816 − cmin 10145 #chash 12979 USGrph cusg 25859 ComplUSGrph ccusgra 25947 UnivVertex cuvtx 25948 VDeg cvdg 26420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-xnn0 11241 df-z 11255 df-uz 11564 df-xadd 11823 df-fz 12198 df-hash 12980 df-usgra 25862 df-nbgra 25949 df-cusgra 25950 df-uvtx 25951 df-vdgr 26421 |
This theorem is referenced by: cusgraiffrusgra 26467 |
Copyright terms: Public domain | W3C validator |