Step | Hyp | Ref
| Expression |
1 | | vdgr1.1 |
. . 3
⊢ (𝜑 → 𝑉 ∈ V) |
2 | | vdgr1.2 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ V) |
3 | | prex 4836 |
. . . . 5
⊢ {𝐵, 𝐶} ∈ V |
4 | | f1osng 6089 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ {𝐵, 𝐶} ∈ V) → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1-onto→{{𝐵, 𝐶}}) |
5 | 2, 3, 4 | sylancl 693 |
. . . 4
⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1-onto→{{𝐵, 𝐶}}) |
6 | | f1ofn 6051 |
. . . 4
⊢
({〈𝐴, {𝐵, 𝐶}〉}:{𝐴}–1-1-onto→{{𝐵, 𝐶}} → {〈𝐴, {𝐵, 𝐶}〉} Fn {𝐴}) |
7 | 5, 6 | syl 17 |
. . 3
⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉} Fn {𝐴}) |
8 | | snex 4835 |
. . . 4
⊢ {𝐴} ∈ V |
9 | 8 | a1i 11 |
. . 3
⊢ (𝜑 → {𝐴} ∈ V) |
10 | | vdgr1.3 |
. . 3
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
11 | | vdgrval 26423 |
. . 3
⊢ (((𝑉 ∈ V ∧ {〈𝐴, {𝐵, 𝐶}〉} Fn {𝐴} ∧ {𝐴} ∈ V) ∧ 𝑈 ∈ 𝑉) → ((𝑉 VDeg {〈𝐴, {𝐵, 𝐶}〉})‘𝑈) = ((#‘{𝑥 ∈ {𝐴} ∣ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)}) +𝑒 (#‘{𝑥 ∈ {𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}}))) |
12 | 1, 7, 9, 10, 11 | syl31anc 1321 |
. 2
⊢ (𝜑 → ((𝑉 VDeg {〈𝐴, {𝐵, 𝐶}〉})‘𝑈) = ((#‘{𝑥 ∈ {𝐴} ∣ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)}) +𝑒 (#‘{𝑥 ∈ {𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}}))) |
13 | | hashrabrsn 13022 |
. . . 4
⊢
(#‘{𝑥 ∈
{𝐴} ∣ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)}) ∈
ℕ0 |
14 | 13 | nn0rei 11180 |
. . 3
⊢
(#‘{𝑥 ∈
{𝐴} ∣ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)}) ∈ ℝ |
15 | | hashrabrsn 13022 |
. . . . 5
⊢
(#‘{𝑥 ∈
{𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}}) ∈
ℕ0 |
16 | 15 | nn0rei 11180 |
. . . 4
⊢
(#‘{𝑥 ∈
{𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}}) ∈ ℝ |
17 | 16 | a1i 11 |
. . 3
⊢ (𝜑 → (#‘{𝑥 ∈ {𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}}) ∈ ℝ) |
18 | | rexadd 11937 |
. . 3
⊢
(((#‘{𝑥 ∈
{𝐴} ∣ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)}) ∈ ℝ ∧ (#‘{𝑥 ∈ {𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}}) ∈ ℝ) → ((#‘{𝑥 ∈ {𝐴} ∣ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)}) +𝑒 (#‘{𝑥 ∈ {𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}})) = ((#‘{𝑥 ∈ {𝐴} ∣ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)}) + (#‘{𝑥 ∈ {𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}}))) |
19 | 14, 17, 18 | sylancr 694 |
. 2
⊢ (𝜑 → ((#‘{𝑥 ∈ {𝐴} ∣ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)}) +𝑒 (#‘{𝑥 ∈ {𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}})) = ((#‘{𝑥 ∈ {𝐴} ∣ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)}) + (#‘{𝑥 ∈ {𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}}))) |
20 | | vdgr1.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ≠ 𝑈) |
21 | 20 | necomd 2837 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ≠ 𝐵) |
22 | | vdgr1a.7 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ≠ 𝑈) |
23 | 22 | necomd 2837 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ≠ 𝐶) |
24 | 21, 23 | jca 553 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑈 ≠ 𝐵 ∧ 𝑈 ≠ 𝐶)) |
25 | | neanior 2874 |
. . . . . . . . . . 11
⊢ ((𝑈 ≠ 𝐵 ∧ 𝑈 ≠ 𝐶) ↔ ¬ (𝑈 = 𝐵 ∨ 𝑈 = 𝐶)) |
26 | 24, 25 | sylib 207 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ (𝑈 = 𝐵 ∨ 𝑈 = 𝐶)) |
27 | 26 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → ¬ (𝑈 = 𝐵 ∨ 𝑈 = 𝐶)) |
28 | | elsni 4142 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) |
29 | 28 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {𝐴} → ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = ({〈𝐴, {𝐵, 𝐶}〉}‘𝐴)) |
30 | | fvsng 6352 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ V ∧ {𝐵, 𝐶} ∈ V) → ({〈𝐴, {𝐵, 𝐶}〉}‘𝐴) = {𝐵, 𝐶}) |
31 | 2, 3, 30 | sylancl 693 |
. . . . . . . . . . . 12
⊢ (𝜑 → ({〈𝐴, {𝐵, 𝐶}〉}‘𝐴) = {𝐵, 𝐶}) |
32 | 29, 31 | sylan9eqr 2666 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝐵, 𝐶}) |
33 | 32 | eleq2d 2673 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) ↔ 𝑈 ∈ {𝐵, 𝐶})) |
34 | | elpri 4145 |
. . . . . . . . . 10
⊢ (𝑈 ∈ {𝐵, 𝐶} → (𝑈 = 𝐵 ∨ 𝑈 = 𝐶)) |
35 | 33, 34 | syl6bi 242 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) → (𝑈 = 𝐵 ∨ 𝑈 = 𝐶))) |
36 | 27, 35 | mtod 188 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → ¬ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)) |
37 | 36 | ralrimiva 2949 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ {𝐴} ¬ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)) |
38 | | rabeq0 3911 |
. . . . . . 7
⊢ ({𝑥 ∈ {𝐴} ∣ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)} = ∅ ↔ ∀𝑥 ∈ {𝐴} ¬ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)) |
39 | 37, 38 | sylibr 223 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ {𝐴} ∣ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)} = ∅) |
40 | 39 | fveq2d 6107 |
. . . . 5
⊢ (𝜑 → (#‘{𝑥 ∈ {𝐴} ∣ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)}) = (#‘∅)) |
41 | | hash0 13019 |
. . . . 5
⊢
(#‘∅) = 0 |
42 | 40, 41 | syl6eq 2660 |
. . . 4
⊢ (𝜑 → (#‘{𝑥 ∈ {𝐴} ∣ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)}) = 0) |
43 | | snidg 4153 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈}) |
44 | 10, 43 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ {𝑈}) |
45 | 44 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → 𝑈 ∈ {𝑈}) |
46 | | eleq2 2677 |
. . . . . . . . . 10
⊢
(({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈} → (𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) ↔ 𝑈 ∈ {𝑈})) |
47 | 45, 46 | syl5ibrcom 236 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈} → 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥))) |
48 | 36, 47 | mtod 188 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → ¬ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}) |
49 | 48 | ralrimiva 2949 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ {𝐴} ¬ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}) |
50 | | rabeq0 3911 |
. . . . . . 7
⊢ ({𝑥 ∈ {𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}} = ∅ ↔ ∀𝑥 ∈ {𝐴} ¬ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}) |
51 | 49, 50 | sylibr 223 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ {𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}} = ∅) |
52 | 51 | fveq2d 6107 |
. . . . 5
⊢ (𝜑 → (#‘{𝑥 ∈ {𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}}) = (#‘∅)) |
53 | 52, 41 | syl6eq 2660 |
. . . 4
⊢ (𝜑 → (#‘{𝑥 ∈ {𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}}) = 0) |
54 | 42, 53 | oveq12d 6567 |
. . 3
⊢ (𝜑 → ((#‘{𝑥 ∈ {𝐴} ∣ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)}) + (#‘{𝑥 ∈ {𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}})) = (0 + 0)) |
55 | | 00id 10090 |
. . 3
⊢ (0 + 0) =
0 |
56 | 54, 55 | syl6eq 2660 |
. 2
⊢ (𝜑 → ((#‘{𝑥 ∈ {𝐴} ∣ 𝑈 ∈ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥)}) + (#‘{𝑥 ∈ {𝐴} ∣ ({〈𝐴, {𝐵, 𝐶}〉}‘𝑥) = {𝑈}})) = 0) |
57 | 12, 19, 56 | 3eqtrd 2648 |
1
⊢ (𝜑 → ((𝑉 VDeg {〈𝐴, {𝐵, 𝐶}〉})‘𝑈) = 0) |