Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > vdegp1ai-av | Structured version Visualization version GIF version |
Description: The induction step for a vertex degree calculation. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑌} to the edge set, where 𝑋 ≠ 𝑈 ≠ 𝑌, yields degree 𝑃 as well. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
Ref | Expression |
---|---|
vdegp1ai-av.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
vdegp1ai-av.u | ⊢ 𝑈 ∈ 𝑉 |
vdegp1ai-av.i | ⊢ 𝐼 = (iEdg‘𝐺) |
vdegp1ai-av.w | ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} |
vdegp1ai-av.d | ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 |
vdegp1ai-av.vf | ⊢ (Vtx‘𝐹) = 𝑉 |
vdegp1ai-av.x | ⊢ 𝑋 ∈ 𝑉 |
vdegp1ai-av.xu | ⊢ 𝑋 ≠ 𝑈 |
vdegp1ai-av.y | ⊢ 𝑌 ∈ 𝑉 |
vdegp1ai-av.yu | ⊢ 𝑌 ≠ 𝑈 |
vdegp1ai-av.f | ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑌}”〉) |
Ref | Expression |
---|---|
vdegp1ai-av | ⊢ ((VtxDeg‘𝐹)‘𝑈) = 𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 4836 | . . 3 ⊢ {𝑋, 𝑌} ∈ V | |
2 | vdegp1ai-av.vg | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | vdegp1ai-av.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | vdegp1ai-av.w | . . . . 5 ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} | |
5 | wrdf 13165 | . . . . . 6 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → 𝐼:(0..^(#‘𝐼))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) | |
6 | ffun 5961 | . . . . . 6 ⊢ (𝐼:(0..^(#‘𝐼))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → Fun 𝐼) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → Fun 𝐼) |
8 | 4, 7 | mp1i 13 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → Fun 𝐼) |
9 | vdegp1ai-av.vf | . . . . 5 ⊢ (Vtx‘𝐹) = 𝑉 | |
10 | 9 | a1i 11 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → (Vtx‘𝐹) = 𝑉) |
11 | vdegp1ai-av.f | . . . . 5 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑌}”〉) | |
12 | wrdv 13175 | . . . . . . 7 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → 𝐼 ∈ Word V) | |
13 | 4, 12 | ax-mp 5 | . . . . . 6 ⊢ 𝐼 ∈ Word V |
14 | cats1un 13327 | . . . . . 6 ⊢ ((𝐼 ∈ Word V ∧ {𝑋, 𝑌} ∈ V) → (𝐼 ++ 〈“{𝑋, 𝑌}”〉) = (𝐼 ∪ {〈(#‘𝐼), {𝑋, 𝑌}〉})) | |
15 | 13, 14 | mpan 702 | . . . . 5 ⊢ ({𝑋, 𝑌} ∈ V → (𝐼 ++ 〈“{𝑋, 𝑌}”〉) = (𝐼 ∪ {〈(#‘𝐼), {𝑋, 𝑌}〉})) |
16 | 11, 15 | syl5eq 2656 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → (iEdg‘𝐹) = (𝐼 ∪ {〈(#‘𝐼), {𝑋, 𝑌}〉})) |
17 | fvex 6113 | . . . . 5 ⊢ (#‘𝐼) ∈ V | |
18 | 17 | a1i 11 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → (#‘𝐼) ∈ V) |
19 | wrdlndm 13176 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → (#‘𝐼) ∉ dom 𝐼) | |
20 | 4, 19 | mp1i 13 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → (#‘𝐼) ∉ dom 𝐼) |
21 | vdegp1ai-av.u | . . . . 5 ⊢ 𝑈 ∈ 𝑉 | |
22 | 21 | a1i 11 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → 𝑈 ∈ 𝑉) |
23 | id 22 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → {𝑋, 𝑌} ∈ V) | |
24 | vdegp1ai-av.xu | . . . . . . 7 ⊢ 𝑋 ≠ 𝑈 | |
25 | 24 | necomi 2836 | . . . . . 6 ⊢ 𝑈 ≠ 𝑋 |
26 | vdegp1ai-av.yu | . . . . . . 7 ⊢ 𝑌 ≠ 𝑈 | |
27 | 26 | necomi 2836 | . . . . . 6 ⊢ 𝑈 ≠ 𝑌 |
28 | 25, 27 | prneli 4150 | . . . . 5 ⊢ 𝑈 ∉ {𝑋, 𝑌} |
29 | 28 | a1i 11 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → 𝑈 ∉ {𝑋, 𝑌}) |
30 | 2, 3, 8, 10, 16, 18, 20, 22, 23, 29 | p1evtxdeq 40729 | . . 3 ⊢ ({𝑋, 𝑌} ∈ V → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈)) |
31 | 1, 30 | ax-mp 5 | . 2 ⊢ ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈) |
32 | vdegp1ai-av.d | . 2 ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 | |
33 | 31, 32 | eqtri 2632 | 1 ⊢ ((VtxDeg‘𝐹)‘𝑈) = 𝑃 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∉ wnel 2781 {crab 2900 Vcvv 3173 ∖ cdif 3537 ∪ cun 3538 ∅c0 3874 𝒫 cpw 4108 {csn 4125 {cpr 4127 〈cop 4131 class class class wbr 4583 dom cdm 5038 Fun wfun 5798 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 0cc0 9815 ≤ cle 9954 2c2 10947 ..^cfzo 12334 #chash 12979 Word cword 13146 ++ cconcat 13148 〈“cs1 13149 Vtxcvtx 25673 iEdgciedg 25674 VtxDegcvtxdg 40681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-xnn0 11241 df-z 11255 df-uz 11564 df-xadd 11823 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-concat 13156 df-s1 13157 df-vtx 25675 df-iedg 25676 df-vtxdg 40682 |
This theorem is referenced by: konigsberglem1 41422 konigsberglem2 41423 konigsberglem3 41424 |
Copyright terms: Public domain | W3C validator |