Step | Hyp | Ref
| Expression |
1 | | renegcl 10223 |
. . . 4
⊢ (𝐵 ∈ ℝ → -𝐵 ∈
ℝ) |
2 | 1 | adantr 480 |
. . 3
⊢ ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) → -𝐵 ∈ ℝ) |
3 | | arch 11166 |
. . 3
⊢ (-𝐵 ∈ ℝ →
∃𝑛 ∈ ℕ
-𝐵 < 𝑛) |
4 | 2, 3 | syl 17 |
. 2
⊢ ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) → ∃𝑛 ∈ ℕ -𝐵 < 𝑛) |
5 | | simplrl 796 |
. . . . 5
⊢ (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧}) |
6 | | simplrl 796 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧)) → 𝑛 ∈ ℕ) |
7 | | nnnegz 11257 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → -𝑛 ∈
ℤ) |
8 | 6, 7 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧)) → -𝑛 ∈ ℤ) |
9 | 8 | zred 11358 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧)) → -𝑛 ∈ ℝ) |
10 | | simprl 790 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧)) → 𝑧 ∈ ℤ) |
11 | 10 | zred 11358 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧)) → 𝑧 ∈ ℝ) |
12 | | simpll 786 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧)) → 𝐵 ∈ ℝ) |
13 | 6 | nnred 10912 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧)) → 𝑛 ∈ ℝ) |
14 | | simplrr 797 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧)) → -𝐵 < 𝑛) |
15 | 12, 13, 14 | ltnegcon1d 10486 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧)) → -𝑛 < 𝐵) |
16 | | simprr 792 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧)) → 𝐵 ≤ 𝑧) |
17 | 9, 12, 11, 15, 16 | ltletrd 10076 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧)) → -𝑛 < 𝑧) |
18 | 9, 11, 17 | ltled 10064 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧)) → -𝑛 ≤ 𝑧) |
19 | | eluz 11577 |
. . . . . . . . . . 11
⊢ ((-𝑛 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 ∈
(ℤ≥‘-𝑛) ↔ -𝑛 ≤ 𝑧)) |
20 | 8, 10, 19 | syl2anc 691 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧)) → (𝑧 ∈ (ℤ≥‘-𝑛) ↔ -𝑛 ≤ 𝑧)) |
21 | 18, 20 | mpbird 246 |
. . . . . . . . 9
⊢ (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧)) → 𝑧 ∈ (ℤ≥‘-𝑛)) |
22 | 21 | expr 641 |
. . . . . . . 8
⊢ (((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑧 ∈ ℤ) → (𝐵 ≤ 𝑧 → 𝑧 ∈ (ℤ≥‘-𝑛))) |
23 | 22 | ralrimiva 2949 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑧 ∈ ℤ (𝐵 ≤ 𝑧 → 𝑧 ∈ (ℤ≥‘-𝑛))) |
24 | | rabss 3642 |
. . . . . . 7
⊢ ({𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ⊆
(ℤ≥‘-𝑛) ↔ ∀𝑧 ∈ ℤ (𝐵 ≤ 𝑧 → 𝑧 ∈ (ℤ≥‘-𝑛))) |
25 | 23, 24 | sylibr 223 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ⊆
(ℤ≥‘-𝑛)) |
26 | 25 | adantlr 747 |
. . . . 5
⊢ (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ⊆
(ℤ≥‘-𝑛)) |
27 | 5, 26 | sstrd 3578 |
. . . 4
⊢ (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆
(ℤ≥‘-𝑛)) |
28 | | simplrr 797 |
. . . 4
⊢ (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ≠ ∅) |
29 | | infssuzcl 11648 |
. . . 4
⊢ ((𝐴 ⊆
(ℤ≥‘-𝑛) ∧ 𝐴 ≠ ∅) → inf(𝐴, ℝ, < ) ∈ 𝐴) |
30 | 27, 28, 29 | syl2anc 691 |
. . 3
⊢ (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → inf(𝐴, ℝ, < ) ∈ 𝐴) |
31 | | infssuzle 11647 |
. . . . 5
⊢ ((𝐴 ⊆
(ℤ≥‘-𝑛) ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦) |
32 | 27, 31 | sylan 487 |
. . . 4
⊢ ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑦) |
33 | 32 | ralrimiva 2949 |
. . 3
⊢ (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑦 ∈ 𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦) |
34 | 30 | adantr 480 |
. . . . . . 7
⊢ ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) → inf(𝐴, ℝ, < ) ∈ 𝐴) |
35 | | simprr 792 |
. . . . . . 7
⊢ ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) → ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
36 | | breq2 4587 |
. . . . . . . 8
⊢ (𝑦 = inf(𝐴, ℝ, < ) → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ inf(𝐴, ℝ, < ))) |
37 | 36 | rspcv 3278 |
. . . . . . 7
⊢
(inf(𝐴, ℝ,
< ) ∈ 𝐴 →
(∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → 𝑥 ≤ inf(𝐴, ℝ, < ))) |
38 | 34, 35, 37 | sylc 63 |
. . . . . 6
⊢ ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) → 𝑥 ≤ inf(𝐴, ℝ, < )) |
39 | 27 | adantr 480 |
. . . . . . 7
⊢ ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) → 𝐴 ⊆
(ℤ≥‘-𝑛)) |
40 | | simprl 790 |
. . . . . . 7
⊢ ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) → 𝑥 ∈ 𝐴) |
41 | | infssuzle 11647 |
. . . . . . 7
⊢ ((𝐴 ⊆
(ℤ≥‘-𝑛) ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ, < ) ≤ 𝑥) |
42 | 39, 40, 41 | syl2anc 691 |
. . . . . 6
⊢ ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) → inf(𝐴, ℝ, < ) ≤ 𝑥) |
43 | | uzssz 11583 |
. . . . . . . . . . 11
⊢
(ℤ≥‘-𝑛) ⊆ ℤ |
44 | | zssre 11261 |
. . . . . . . . . . 11
⊢ ℤ
⊆ ℝ |
45 | 43, 44 | sstri 3577 |
. . . . . . . . . 10
⊢
(ℤ≥‘-𝑛) ⊆ ℝ |
46 | 27, 45 | syl6ss 3580 |
. . . . . . . . 9
⊢ (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → 𝐴 ⊆ ℝ) |
47 | 46 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) → 𝐴 ⊆ ℝ) |
48 | 47, 40 | sseldd 3569 |
. . . . . . 7
⊢ ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) → 𝑥 ∈ ℝ) |
49 | 46, 30 | sseldd 3569 |
. . . . . . . 8
⊢ (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → inf(𝐴, ℝ, < ) ∈
ℝ) |
50 | 49 | adantr 480 |
. . . . . . 7
⊢ ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) → inf(𝐴, ℝ, < ) ∈
ℝ) |
51 | 48, 50 | letri3d 10058 |
. . . . . 6
⊢ ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) → (𝑥 = inf(𝐴, ℝ, < ) ↔ (𝑥 ≤ inf(𝐴, ℝ, < ) ∧ inf(𝐴, ℝ, < ) ≤ 𝑥))) |
52 | 38, 42, 51 | mpbir2and 959 |
. . . . 5
⊢ ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) → 𝑥 = inf(𝐴, ℝ, < )) |
53 | 52 | expr 641 |
. . . 4
⊢ ((((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → 𝑥 = inf(𝐴, ℝ, < ))) |
54 | 53 | ralrimiva 2949 |
. . 3
⊢ (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → 𝑥 = inf(𝐴, ℝ, < ))) |
55 | | breq1 4586 |
. . . . 5
⊢ (𝑥 = inf(𝐴, ℝ, < ) → (𝑥 ≤ 𝑦 ↔ inf(𝐴, ℝ, < ) ≤ 𝑦)) |
56 | 55 | ralbidv 2969 |
. . . 4
⊢ (𝑥 = inf(𝐴, ℝ, < ) → (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦)) |
57 | 56 | eqreu 3365 |
. . 3
⊢
((inf(𝐴, ℝ,
< ) ∈ 𝐴 ∧
∀𝑦 ∈ 𝐴 inf(𝐴, ℝ, < ) ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → 𝑥 = inf(𝐴, ℝ, < ))) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
58 | 30, 33, 54, 57 | syl3anc 1318 |
. 2
⊢ (((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) ∧ (𝑛 ∈ ℕ ∧ -𝐵 < 𝑛)) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
59 | 4, 58 | rexlimddv 3017 |
1
⊢ ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |