MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzinfi Structured version   Visualization version   GIF version

Theorem uzinfi 11644
Description: Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005.) (Revised by AV, 4-Sep-2020.)
Hypothesis
Ref Expression
uzinfi.1 𝑀 ∈ ℤ
Assertion
Ref Expression
uzinfi inf((ℤ𝑀), ℝ, < ) = 𝑀

Proof of Theorem uzinfi
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzinfi.1 . 2 𝑀 ∈ ℤ
2 ltso 9997 . . . 4 < Or ℝ
32a1i 11 . . 3 (𝑀 ∈ ℤ → < Or ℝ)
4 zre 11258 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5 uzid 11578 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
6 eluz2 11569 . . . . 5 (𝑘 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘))
74adantr 480 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℝ)
8 zre 11258 . . . . . . . . 9 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
98adantl 481 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
107, 9lenltd 10062 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀𝑘 ↔ ¬ 𝑘 < 𝑀))
1110biimp3a 1424 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → ¬ 𝑘 < 𝑀)
1211a1d 25 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀))
136, 12sylbi 206 . . . 4 (𝑘 ∈ (ℤ𝑀) → (𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀))
1413impcom 445 . . 3 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑀)) → ¬ 𝑘 < 𝑀)
153, 4, 5, 14infmin 8283 . 2 (𝑀 ∈ ℤ → inf((ℤ𝑀), ℝ, < ) = 𝑀)
161, 15ax-mp 5 1 inf((ℤ𝑀), ℝ, < ) = 𝑀
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583   Or wor 4958  cfv 5804  infcinf 8230  cr 9814   < clt 9953  cle 9954  cz 11254  cuz 11563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-neg 10148  df-z 11255  df-uz 11564
This theorem is referenced by:  nninf  11645  nn0inf  11646
  Copyright terms: Public domain W3C validator