MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcvv0 Structured version   Visualization version   GIF version

Theorem uvcvv0 19948
Description: The unit vector is zero at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcvv.u 𝑈 = (𝑅 unitVec 𝐼)
uvcvv.r (𝜑𝑅𝑉)
uvcvv.i (𝜑𝐼𝑊)
uvcvv.j (𝜑𝐽𝐼)
uvcvv0.k (𝜑𝐾𝐼)
uvcvv0.jk (𝜑𝐽𝐾)
uvcvv0.z 0 = (0g𝑅)
Assertion
Ref Expression
uvcvv0 (𝜑 → ((𝑈𝐽)‘𝐾) = 0 )

Proof of Theorem uvcvv0
StepHypRef Expression
1 uvcvv.r . . 3 (𝜑𝑅𝑉)
2 uvcvv.i . . 3 (𝜑𝐼𝑊)
3 uvcvv.j . . 3 (𝜑𝐽𝐼)
4 uvcvv0.k . . 3 (𝜑𝐾𝐼)
5 uvcvv.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
6 eqid 2610 . . . 4 (1r𝑅) = (1r𝑅)
7 uvcvv0.z . . . 4 0 = (0g𝑅)
85, 6, 7uvcvval 19944 . . 3 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r𝑅), 0 ))
91, 2, 3, 4, 8syl31anc 1321 . 2 (𝜑 → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, (1r𝑅), 0 ))
10 uvcvv0.jk . . . 4 (𝜑𝐽𝐾)
11 nesym 2838 . . . 4 (𝐽𝐾 ↔ ¬ 𝐾 = 𝐽)
1210, 11sylib 207 . . 3 (𝜑 → ¬ 𝐾 = 𝐽)
1312iffalsed 4047 . 2 (𝜑 → if(𝐾 = 𝐽, (1r𝑅), 0 ) = 0 )
149, 13eqtrd 2644 1 (𝜑 → ((𝑈𝐽)‘𝐾) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1475  wcel 1977  wne 2780  ifcif 4036  cfv 5804  (class class class)co 6549  0gc0g 15923  1rcur 18324   unitVec cuvc 19940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-uvc 19941
This theorem is referenced by:  uvcf1  19950  uvcresum  19951  frlmssuvc1  19952  frlmsslsp  19954  frlmup2  19957
  Copyright terms: Public domain W3C validator