Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcresum Structured version   Visualization version   GIF version

Theorem uvcresum 19951
 Description: Any element of a free module can be expressed as a finite linear combination of unit vectors. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Jul-2015.)
Hypotheses
Ref Expression
uvcresum.u 𝑈 = (𝑅 unitVec 𝐼)
uvcresum.y 𝑌 = (𝑅 freeLMod 𝐼)
uvcresum.b 𝐵 = (Base‘𝑌)
uvcresum.v · = ( ·𝑠𝑌)
Assertion
Ref Expression
uvcresum ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑋𝑓 · 𝑈)))

Proof of Theorem uvcresum
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvcresum.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝐼)
2 eqid 2610 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
3 uvcresum.b . . . . . . 7 𝐵 = (Base‘𝑌)
41, 2, 3frlmbasf 19923 . . . . . 6 ((𝐼𝑊𝑋𝐵) → 𝑋:𝐼⟶(Base‘𝑅))
543adant1 1072 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋:𝐼⟶(Base‘𝑅))
65feqmptd 6159 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑎𝐼 ↦ (𝑋𝑎)))
7 eqid 2610 . . . . . . 7 (0g𝑅) = (0g𝑅)
8 simpl1 1057 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝑅 ∈ Ring)
9 ringmnd 18379 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
108, 9syl 17 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝑅 ∈ Mnd)
11 simpl2 1058 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝐼𝑊)
12 simpr 476 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → 𝑎𝐼)
13 simpl2 1058 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → 𝐼𝑊)
145ffvelrnda 6267 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑋𝑏) ∈ (Base‘𝑅))
15 uvcresum.u . . . . . . . . . . . . . . . . . 18 𝑈 = (𝑅 unitVec 𝐼)
1615, 1, 3uvcff 19949 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
17163adant3 1074 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑈:𝐼𝐵)
1817ffvelrnda 6267 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑈𝑏) ∈ 𝐵)
19 uvcresum.v . . . . . . . . . . . . . . 15 · = ( ·𝑠𝑌)
20 eqid 2610 . . . . . . . . . . . . . . 15 (.r𝑅) = (.r𝑅)
211, 3, 2, 13, 14, 18, 19, 20frlmvscafval 19928 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝑋𝑏) · (𝑈𝑏)) = ((𝐼 × {(𝑋𝑏)}) ∘𝑓 (.r𝑅)(𝑈𝑏)))
2214adantr 480 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) ∧ 𝑎𝐼) → (𝑋𝑏) ∈ (Base‘𝑅))
231, 2, 3frlmbasf 19923 . . . . . . . . . . . . . . . . 17 ((𝐼𝑊 ∧ (𝑈𝑏) ∈ 𝐵) → (𝑈𝑏):𝐼⟶(Base‘𝑅))
2413, 18, 23syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑈𝑏):𝐼⟶(Base‘𝑅))
2524ffvelrnda 6267 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) ∧ 𝑎𝐼) → ((𝑈𝑏)‘𝑎) ∈ (Base‘𝑅))
26 fconstmpt 5085 . . . . . . . . . . . . . . . 16 (𝐼 × {(𝑋𝑏)}) = (𝑎𝐼 ↦ (𝑋𝑏))
2726a1i 11 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝐼 × {(𝑋𝑏)}) = (𝑎𝐼 ↦ (𝑋𝑏)))
2824feqmptd 6159 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑈𝑏) = (𝑎𝐼 ↦ ((𝑈𝑏)‘𝑎)))
2913, 22, 25, 27, 28offval2 6812 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝐼 × {(𝑋𝑏)}) ∘𝑓 (.r𝑅)(𝑈𝑏)) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
3021, 29eqtrd 2644 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝑋𝑏) · (𝑈𝑏)) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
311frlmlmod 19912 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 ∈ LMod)
32313adant3 1074 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑌 ∈ LMod)
3332adantr 480 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → 𝑌 ∈ LMod)
341frlmsca 19916 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 = (Scalar‘𝑌))
35343adant3 1074 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑅 = (Scalar‘𝑌))
3635fveq2d 6107 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
3736adantr 480 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
3814, 37eleqtrd 2690 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑋𝑏) ∈ (Base‘(Scalar‘𝑌)))
39 eqid 2610 . . . . . . . . . . . . . . 15 (Scalar‘𝑌) = (Scalar‘𝑌)
40 eqid 2610 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
413, 39, 19, 40lmodvscl 18703 . . . . . . . . . . . . . 14 ((𝑌 ∈ LMod ∧ (𝑋𝑏) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑈𝑏) ∈ 𝐵) → ((𝑋𝑏) · (𝑈𝑏)) ∈ 𝐵)
4233, 38, 18, 41syl3anc 1318 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ((𝑋𝑏) · (𝑈𝑏)) ∈ 𝐵)
4330, 42eqeltrrd 2689 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) ∈ 𝐵)
441, 2, 3frlmbasf 19923 . . . . . . . . . . . 12 ((𝐼𝑊 ∧ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) ∈ 𝐵) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
4513, 43, 44syl2anc 691 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
46 eqid 2610 . . . . . . . . . . . 12 (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))
4746fmpt 6289 . . . . . . . . . . 11 (∀𝑎𝐼 ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) ∈ (Base‘𝑅) ↔ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
4845, 47sylibr 223 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) → ∀𝑎𝐼 ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) ∈ (Base‘𝑅))
4948r19.21bi 2916 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏𝐼) ∧ 𝑎𝐼) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) ∈ (Base‘𝑅))
5049an32s 842 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) ∈ (Base‘𝑅))
51 eqid 2610 . . . . . . . 8 (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) = (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))
5250, 51fmptd 6292 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))):𝐼⟶(Base‘𝑅))
5383ad2ant1 1075 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑅 ∈ Ring)
54113ad2ant1 1075 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝐼𝑊)
55 simp2 1055 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑏𝐼)
56123ad2ant1 1075 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑎𝐼)
57 simp3 1056 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → 𝑏𝑎)
5815, 53, 54, 55, 56, 57, 7uvcvv0 19948 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑈𝑏)‘𝑎) = (0g𝑅))
5958oveq2d 6565 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) = ((𝑋𝑏)(.r𝑅)(0g𝑅)))
6014adantlr 747 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼) → (𝑋𝑏) ∈ (Base‘𝑅))
61603adant3 1074 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → (𝑋𝑏) ∈ (Base‘𝑅))
622, 20, 7ringrz 18411 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑋𝑏) ∈ (Base‘𝑅)) → ((𝑋𝑏)(.r𝑅)(0g𝑅)) = (0g𝑅))
6353, 61, 62syl2anc 691 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑋𝑏)(.r𝑅)(0g𝑅)) = (0g𝑅))
6459, 63eqtrd 2644 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) ∧ 𝑏𝐼𝑏𝑎) → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) = (0g𝑅))
6564, 11suppsssn 7217 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) supp (0g𝑅)) ⊆ {𝑎})
662, 7, 10, 11, 12, 52, 65gsumpt 18184 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) = ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎))
67 fveq2 6103 . . . . . . . . . 10 (𝑏 = 𝑎 → (𝑋𝑏) = (𝑋𝑎))
68 fveq2 6103 . . . . . . . . . . 11 (𝑏 = 𝑎 → (𝑈𝑏) = (𝑈𝑎))
6968fveq1d 6105 . . . . . . . . . 10 (𝑏 = 𝑎 → ((𝑈𝑏)‘𝑎) = ((𝑈𝑎)‘𝑎))
7067, 69oveq12d 6567 . . . . . . . . 9 (𝑏 = 𝑎 → ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)) = ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)))
71 ovex 6577 . . . . . . . . 9 ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)) ∈ V
7270, 51, 71fvmpt 6191 . . . . . . . 8 (𝑎𝐼 → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎) = ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)))
7372adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎) = ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)))
74 eqid 2610 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
7515, 8, 11, 12, 74uvcvv1 19947 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑈𝑎)‘𝑎) = (1r𝑅))
7675oveq2d 6565 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)) = ((𝑋𝑎)(.r𝑅)(1r𝑅)))
775ffvelrnda 6267 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑋𝑎) ∈ (Base‘𝑅))
782, 20, 74ringridm 18395 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝑎) ∈ (Base‘𝑅)) → ((𝑋𝑎)(.r𝑅)(1r𝑅)) = (𝑋𝑎))
798, 77, 78syl2anc 691 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑋𝑎)(.r𝑅)(1r𝑅)) = (𝑋𝑎))
8076, 79eqtrd 2644 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑋𝑎)(.r𝑅)((𝑈𝑎)‘𝑎)) = (𝑋𝑎))
8173, 80eqtrd 2644 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → ((𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))‘𝑎) = (𝑋𝑎))
8266, 81eqtrd 2644 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑎𝐼) → (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) = (𝑋𝑎))
8382mpteq2dva 4672 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑎𝐼 ↦ (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))) = (𝑎𝐼 ↦ (𝑋𝑎)))
846, 83eqtr4d 2647 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑎𝐼 ↦ (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
85 eqid 2610 . . . 4 (0g𝑌) = (0g𝑌)
86 simp2 1055 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝐼𝑊)
87 simp1 1054 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑅 ∈ Ring)
88 mptexg 6389 . . . . . 6 (𝐼𝑊 → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∈ V)
89883ad2ant2 1076 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∈ V)
90 funmpt 5840 . . . . . 6 Fun (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
9190a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → Fun (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))))
92 fvex 6113 . . . . . 6 (0g𝑌) ∈ V
9392a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (0g𝑌) ∈ V)
941, 7, 3frlmbasfsupp 19921 . . . . . . 7 ((𝐼𝑊𝑋𝐵) → 𝑋 finSupp (0g𝑅))
95943adant1 1072 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 finSupp (0g𝑅))
9695fsuppimpd 8165 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋 supp (0g𝑅)) ∈ Fin)
9735eqcomd 2616 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (Scalar‘𝑌) = 𝑅)
9897fveq2d 6107 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (0g‘(Scalar‘𝑌)) = (0g𝑅))
9998oveq2d 6565 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋 supp (0g‘(Scalar‘𝑌))) = (𝑋 supp (0g𝑅)))
100 ssid 3587 . . . . . . . . . 10 (𝑋 supp (0g𝑅)) ⊆ (𝑋 supp (0g𝑅))
10199, 100syl6eqss 3618 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋 supp (0g‘(Scalar‘𝑌))) ⊆ (𝑋 supp (0g𝑅)))
102 fvex 6113 . . . . . . . . . 10 (0g‘(Scalar‘𝑌)) ∈ V
103102a1i 11 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (0g‘(Scalar‘𝑌)) ∈ V)
1045, 101, 86, 103suppssr 7213 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → (𝑋𝑏) = (0g‘(Scalar‘𝑌)))
105104oveq1d 6564 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → ((𝑋𝑏) · (𝑈𝑏)) = ((0g‘(Scalar‘𝑌)) · (𝑈𝑏)))
106 eldifi 3694 . . . . . . . 8 (𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅))) → 𝑏𝐼)
107106, 30sylan2 490 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → ((𝑋𝑏) · (𝑈𝑏)) = (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))
10832adantr 480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → 𝑌 ∈ LMod)
109106, 18sylan2 490 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → (𝑈𝑏) ∈ 𝐵)
110 eqid 2610 . . . . . . . . 9 (0g‘(Scalar‘𝑌)) = (0g‘(Scalar‘𝑌))
1113, 39, 19, 110, 85lmod0vs 18719 . . . . . . . 8 ((𝑌 ∈ LMod ∧ (𝑈𝑏) ∈ 𝐵) → ((0g‘(Scalar‘𝑌)) · (𝑈𝑏)) = (0g𝑌))
112108, 109, 111syl2anc 691 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → ((0g‘(Scalar‘𝑌)) · (𝑈𝑏)) = (0g𝑌))
113105, 107, 1123eqtr3d 2652 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) ∧ 𝑏 ∈ (𝐼 ∖ (𝑋 supp (0g𝑅)))) → (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))) = (0g𝑌))
114113, 86suppss2 7216 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → ((𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) supp (0g𝑌)) ⊆ (𝑋 supp (0g𝑅)))
115 suppssfifsupp 8173 . . . . 5 ((((𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∈ V ∧ Fun (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) ∧ (0g𝑌) ∈ V) ∧ ((𝑋 supp (0g𝑅)) ∈ Fin ∧ ((𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) supp (0g𝑌)) ⊆ (𝑋 supp (0g𝑅)))) → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) finSupp (0g𝑌))
11689, 91, 93, 96, 114, 115syl32anc 1326 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))) finSupp (0g𝑌))
1171, 3, 85, 86, 86, 87, 43, 116frlmgsum 19930 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑌 Σg (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))) = (𝑎𝐼 ↦ (𝑅 Σg (𝑏𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
11884, 117eqtr4d 2647 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
1195feqmptd 6159 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑏𝐼 ↦ (𝑋𝑏)))
12017feqmptd 6159 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑈 = (𝑏𝐼 ↦ (𝑈𝑏)))
12186, 14, 18, 119, 120offval2 6812 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋𝑓 · 𝑈) = (𝑏𝐼 ↦ ((𝑋𝑏) · (𝑈𝑏))))
12230mpteq2dva 4672 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑏𝐼 ↦ ((𝑋𝑏) · (𝑈𝑏))) = (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))))
123121, 122eqtrd 2644 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑋𝑓 · 𝑈) = (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎)))))
124123oveq2d 6565 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → (𝑌 Σg (𝑋𝑓 · 𝑈)) = (𝑌 Σg (𝑏𝐼 ↦ (𝑎𝐼 ↦ ((𝑋𝑏)(.r𝑅)((𝑈𝑏)‘𝑎))))))
125118, 124eqtr4d 2647 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊𝑋𝐵) → 𝑋 = (𝑌 Σg (𝑋𝑓 · 𝑈)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  {csn 4125   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036  Fun wfun 5798  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ∘𝑓 cof 6793   supp csupp 7182  Fincfn 7841   finSupp cfsupp 8158  Basecbs 15695  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  1rcur 18324  Ringcrg 18370  LModclmod 18686   freeLMod cfrlm 19909   unitVec cuvc 19940 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-dsmm 19895  df-frlm 19910  df-uvc 19941 This theorem is referenced by:  frlmsslsp  19954
 Copyright terms: Public domain W3C validator