Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uunT12p1 Structured version   Visualization version   GIF version

Theorem uunT12p1 38048
 Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
uunT12p1.1 ((⊤ ∧ 𝜓𝜑) → 𝜒)
Assertion
Ref Expression
uunT12p1 ((𝜑𝜓) → 𝜒)

Proof of Theorem uunT12p1
StepHypRef Expression
1 3anass 1035 . . . 4 ((⊤ ∧ 𝜓𝜑) ↔ (⊤ ∧ (𝜓𝜑)))
2 truan 1492 . . . 4 ((⊤ ∧ (𝜓𝜑)) ↔ (𝜓𝜑))
31, 2bitri 263 . . 3 ((⊤ ∧ 𝜓𝜑) ↔ (𝜓𝜑))
4 ancom 465 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
53, 4bitr4i 266 . 2 ((⊤ ∧ 𝜓𝜑) ↔ (𝜑𝜓))
6 uunT12p1.1 . 2 ((⊤ ∧ 𝜓𝜑) → 𝜒)
75, 6sylbir 224 1 ((𝜑𝜓) → 𝜒)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031  ⊤wtru 1476 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033  df-tru 1478 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator