Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uun132p1 Structured version   Visualization version   GIF version

Theorem uun132p1 38034
 Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
uun132p1.1 (((𝜓𝜒) ∧ 𝜑) → 𝜃)
Assertion
Ref Expression
uun132p1 ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem uun132p1
StepHypRef Expression
1 3anass 1035 . . 3 ((𝜑𝜓𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
2 ancom 465 . . 3 ((𝜑 ∧ (𝜓𝜒)) ↔ ((𝜓𝜒) ∧ 𝜑))
31, 2bitri 263 . 2 ((𝜑𝜓𝜒) ↔ ((𝜓𝜒) ∧ 𝜑))
4 uun132p1.1 . 2 (((𝜓𝜒) ∧ 𝜑) → 𝜃)
53, 4sylbi 206 1 ((𝜑𝜓𝜒) → 𝜃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator