MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopsnneiplem Structured version   Visualization version   GIF version

Theorem utopsnneiplem 21861
Description: The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypotheses
Ref Expression
utoptop.1 𝐽 = (unifTop‘𝑈)
utopsnneip.1 𝐾 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
utopsnneip.2 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
utopsnneiplem ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
Distinct variable groups:   𝑝,𝑎,𝐾   𝑁,𝑎,𝑝   𝑣,𝑝,𝑃   𝑣,𝑎,𝑈,𝑝   𝑋,𝑎,𝑝,𝑣
Allowed substitution hints:   𝑃(𝑎)   𝐽(𝑣,𝑝,𝑎)   𝐾(𝑣)   𝑁(𝑣)

Proof of Theorem utopsnneiplem
Dummy variables 𝑏 𝑞 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utoptop.1 . . . . . . . 8 𝐽 = (unifTop‘𝑈)
2 utopval 21846 . . . . . . . 8 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎𝑤𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎})
31, 2syl5eq 2656 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎𝑤𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎})
4 simpll 786 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) → 𝑈 ∈ (UnifOn‘𝑋))
5 simpr 476 . . . . . . . . . . . . 13 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑎 ∈ 𝒫 𝑋)
65elpwid 4118 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → 𝑎𝑋)
76sselda 3568 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) → 𝑝𝑋)
8 simpr 476 . . . . . . . . . . . . . 14 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑝𝑋)
9 mptexg 6389 . . . . . . . . . . . . . . . 16 (𝑈 ∈ (UnifOn‘𝑋) → (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V)
10 rnexg 6990 . . . . . . . . . . . . . . . 16 ((𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V)
119, 10syl 17 . . . . . . . . . . . . . . 15 (𝑈 ∈ (UnifOn‘𝑋) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V)
1211adantr 480 . . . . . . . . . . . . . 14 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V)
13 utopsnneip.2 . . . . . . . . . . . . . . 15 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1413fvmpt2 6200 . . . . . . . . . . . . . 14 ((𝑝𝑋 ∧ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V) → (𝑁𝑝) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
158, 12, 14syl2anc 691 . . . . . . . . . . . . 13 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑁𝑝) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1615eleq2d 2673 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑎 ∈ (𝑁𝑝) ↔ 𝑎 ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝}))))
17 vex 3176 . . . . . . . . . . . . 13 𝑎 ∈ V
18 eqid 2610 . . . . . . . . . . . . . 14 (𝑣𝑈 ↦ (𝑣 “ {𝑝})) = (𝑣𝑈 ↦ (𝑣 “ {𝑝}))
1918elrnmpt 5293 . . . . . . . . . . . . 13 (𝑎 ∈ V → (𝑎 ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ↔ ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑝})))
2017, 19ax-mp 5 . . . . . . . . . . . 12 (𝑎 ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ↔ ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑝}))
2116, 20syl6bb 275 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑝})))
224, 7, 21syl2anc 691 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑝})))
23 nfv 1830 . . . . . . . . . . . . 13 𝑣((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎)
24 nfre1 2988 . . . . . . . . . . . . 13 𝑣𝑣𝑈 𝑎 = (𝑣 “ {𝑝})
2523, 24nfan 1816 . . . . . . . . . . . 12 𝑣(((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑝}))
26 simplr 788 . . . . . . . . . . . . 13 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑝})) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑝})) → 𝑣𝑈)
27 eqimss2 3621 . . . . . . . . . . . . . 14 (𝑎 = (𝑣 “ {𝑝}) → (𝑣 “ {𝑝}) ⊆ 𝑎)
2827adantl 481 . . . . . . . . . . . . 13 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑝})) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑝})) → (𝑣 “ {𝑝}) ⊆ 𝑎)
29 imaeq1 5380 . . . . . . . . . . . . . . 15 (𝑤 = 𝑣 → (𝑤 “ {𝑝}) = (𝑣 “ {𝑝}))
3029sseq1d 3595 . . . . . . . . . . . . . 14 (𝑤 = 𝑣 → ((𝑤 “ {𝑝}) ⊆ 𝑎 ↔ (𝑣 “ {𝑝}) ⊆ 𝑎))
3130rspcev 3282 . . . . . . . . . . . . 13 ((𝑣𝑈 ∧ (𝑣 “ {𝑝}) ⊆ 𝑎) → ∃𝑤𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎)
3226, 28, 31syl2anc 691 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑝})) ∧ 𝑣𝑈) ∧ 𝑎 = (𝑣 “ {𝑝})) → ∃𝑤𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎)
33 simpr 476 . . . . . . . . . . . 12 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑝})) → ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑝}))
3425, 32, 33r19.29af 3058 . . . . . . . . . . 11 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑝})) → ∃𝑤𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎)
354ad2antrr 758 . . . . . . . . . . . . . . 15 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ 𝑤𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → 𝑈 ∈ (UnifOn‘𝑋))
367ad2antrr 758 . . . . . . . . . . . . . . 15 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ 𝑤𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → 𝑝𝑋)
3735, 36jca 553 . . . . . . . . . . . . . 14 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ 𝑤𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋))
38 simpr 476 . . . . . . . . . . . . . 14 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ 𝑤𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → (𝑤 “ {𝑝}) ⊆ 𝑎)
396ad3antrrr 762 . . . . . . . . . . . . . 14 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ 𝑤𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → 𝑎𝑋)
40 simplr 788 . . . . . . . . . . . . . . 15 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ 𝑤𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → 𝑤𝑈)
41 eqid 2610 . . . . . . . . . . . . . . . . . 18 (𝑤 “ {𝑝}) = (𝑤 “ {𝑝})
42 imaeq1 5380 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑤 → (𝑢 “ {𝑝}) = (𝑤 “ {𝑝}))
4342eqeq2d 2620 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑤 → ((𝑤 “ {𝑝}) = (𝑢 “ {𝑝}) ↔ (𝑤 “ {𝑝}) = (𝑤 “ {𝑝})))
4443rspcev 3282 . . . . . . . . . . . . . . . . . 18 ((𝑤𝑈 ∧ (𝑤 “ {𝑝}) = (𝑤 “ {𝑝})) → ∃𝑢𝑈 (𝑤 “ {𝑝}) = (𝑢 “ {𝑝}))
4541, 44mpan2 703 . . . . . . . . . . . . . . . . 17 (𝑤𝑈 → ∃𝑢𝑈 (𝑤 “ {𝑝}) = (𝑢 “ {𝑝}))
4645adantl 481 . . . . . . . . . . . . . . . 16 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) → ∃𝑢𝑈 (𝑤 “ {𝑝}) = (𝑢 “ {𝑝}))
47 vex 3176 . . . . . . . . . . . . . . . . . . 19 𝑤 ∈ V
4847imaex 6996 . . . . . . . . . . . . . . . . . 18 (𝑤 “ {𝑝}) ∈ V
4913ustuqtoplem 21853 . . . . . . . . . . . . . . . . . 18 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ (𝑤 “ {𝑝}) ∈ V) → ((𝑤 “ {𝑝}) ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 (𝑤 “ {𝑝}) = (𝑢 “ {𝑝})))
5048, 49mpan2 703 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ((𝑤 “ {𝑝}) ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 (𝑤 “ {𝑝}) = (𝑢 “ {𝑝})))
5150adantr 480 . . . . . . . . . . . . . . . 16 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) → ((𝑤 “ {𝑝}) ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 (𝑤 “ {𝑝}) = (𝑢 “ {𝑝})))
5246, 51mpbird 246 . . . . . . . . . . . . . . 15 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) → (𝑤 “ {𝑝}) ∈ (𝑁𝑝))
5335, 36, 40, 52syl21anc 1317 . . . . . . . . . . . . . 14 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ 𝑤𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → (𝑤 “ {𝑝}) ∈ (𝑁𝑝))
54 sseq1 3589 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑤 “ {𝑝}) → (𝑏𝑎 ↔ (𝑤 “ {𝑝}) ⊆ 𝑎))
55543anbi2d 1396 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑤 “ {𝑝}) → (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑏𝑎𝑎𝑋) ↔ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎𝑎𝑋)))
56 eleq1 2676 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑤 “ {𝑝}) → (𝑏 ∈ (𝑁𝑝) ↔ (𝑤 “ {𝑝}) ∈ (𝑁𝑝)))
5755, 56anbi12d 743 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑤 “ {𝑝}) → ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑏𝑎𝑎𝑋) ∧ 𝑏 ∈ (𝑁𝑝)) ↔ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎𝑎𝑋) ∧ (𝑤 “ {𝑝}) ∈ (𝑁𝑝))))
5857imbi1d 330 . . . . . . . . . . . . . . 15 (𝑏 = (𝑤 “ {𝑝}) → (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑏𝑎𝑎𝑋) ∧ 𝑏 ∈ (𝑁𝑝)) → 𝑎 ∈ (𝑁𝑝)) ↔ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎𝑎𝑋) ∧ (𝑤 “ {𝑝}) ∈ (𝑁𝑝)) → 𝑎 ∈ (𝑁𝑝))))
5913ustuqtop1 21855 . . . . . . . . . . . . . . 15 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑏𝑎𝑎𝑋) ∧ 𝑏 ∈ (𝑁𝑝)) → 𝑎 ∈ (𝑁𝑝))
6048, 58, 59vtocl 3232 . . . . . . . . . . . . . 14 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎𝑎𝑋) ∧ (𝑤 “ {𝑝}) ∈ (𝑁𝑝)) → 𝑎 ∈ (𝑁𝑝))
6137, 38, 39, 53, 60syl31anc 1321 . . . . . . . . . . . . 13 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ 𝑤𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → 𝑎 ∈ (𝑁𝑝))
6237, 21syl 17 . . . . . . . . . . . . 13 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ 𝑤𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑝})))
6361, 62mpbid 221 . . . . . . . . . . . 12 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ 𝑤𝑈) ∧ (𝑤 “ {𝑝}) ⊆ 𝑎) → ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑝}))
6463r19.29an 3059 . . . . . . . . . . 11 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) ∧ ∃𝑤𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎) → ∃𝑣𝑈 𝑎 = (𝑣 “ {𝑝}))
6534, 64impbida 873 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) → (∃𝑣𝑈 𝑎 = (𝑣 “ {𝑝}) ↔ ∃𝑤𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎))
6622, 65bitrd 267 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) ∧ 𝑝𝑎) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎))
6766ralbidva 2968 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑝𝑎 𝑎 ∈ (𝑁𝑝) ↔ ∀𝑝𝑎𝑤𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎))
6867rabbidva 3163 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎𝑤𝑈 (𝑤 “ {𝑝}) ⊆ 𝑎})
693, 68eqtr4d 2647 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)})
70 utopsnneip.1 . . . . . 6 𝐾 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
7169, 70syl6eqr 2662 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 = 𝐾)
7271fveq2d 6107 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (nei‘𝐽) = (nei‘𝐾))
7372fveq1d 6105 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → ((nei‘𝐽)‘{𝑃}) = ((nei‘𝐾)‘{𝑃}))
7473adantr 480 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ((nei‘𝐾)‘{𝑃}))
7513ustuqtop0 21854 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋)
7613ustuqtop1 21855 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
7713ustuqtop2 21856 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
7813ustuqtop3 21857 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
7913ustuqtop4 21858 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
8013ustuqtop5 21859 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
8170, 75, 76, 77, 78, 79, 80neiptopnei 20746 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁 = (𝑝𝑋 ↦ ((nei‘𝐾)‘{𝑝})))
8281adantr 480 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → 𝑁 = (𝑝𝑋 ↦ ((nei‘𝐾)‘{𝑝})))
83 simpr 476 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃)
8483sneqd 4137 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) ∧ 𝑝 = 𝑃) → {𝑝} = {𝑃})
8584fveq2d 6107 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) ∧ 𝑝 = 𝑃) → ((nei‘𝐾)‘{𝑝}) = ((nei‘𝐾)‘{𝑃}))
86 simpr 476 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → 𝑃𝑋)
87 fvex 6113 . . . 4 ((nei‘𝐾)‘{𝑃}) ∈ V
8887a1i 11 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐾)‘{𝑃}) ∈ V)
8982, 85, 86, 88fvmptd 6197 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → (𝑁𝑃) = ((nei‘𝐾)‘{𝑃}))
90 mptexg 6389 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V)
91 rnexg 6990 . . . . 5 ((𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V → ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V)
9290, 91syl 17 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V)
9392adantr 480 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V)
9413a1i 11 . . . 4 ((𝑃𝑋 ∧ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) → 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝}))))
95 nfv 1830 . . . . . . . 8 𝑣 𝑃𝑋
96 nfmpt1 4675 . . . . . . . . . 10 𝑣(𝑣𝑈 ↦ (𝑣 “ {𝑃}))
9796nfrn 5289 . . . . . . . . 9 𝑣ran (𝑣𝑈 ↦ (𝑣 “ {𝑃}))
9897nfel1 2765 . . . . . . . 8 𝑣ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V
9995, 98nfan 1816 . . . . . . 7 𝑣(𝑃𝑋 ∧ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V)
100 nfv 1830 . . . . . . 7 𝑣 𝑝 = 𝑃
10199, 100nfan 1816 . . . . . 6 𝑣((𝑃𝑋 ∧ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) ∧ 𝑝 = 𝑃)
102 simpr2 1061 . . . . . . . . 9 ((𝑃𝑋 ∧ (ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V ∧ 𝑝 = 𝑃𝑣𝑈)) → 𝑝 = 𝑃)
103102sneqd 4137 . . . . . . . 8 ((𝑃𝑋 ∧ (ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V ∧ 𝑝 = 𝑃𝑣𝑈)) → {𝑝} = {𝑃})
104103imaeq2d 5385 . . . . . . 7 ((𝑃𝑋 ∧ (ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V ∧ 𝑝 = 𝑃𝑣𝑈)) → (𝑣 “ {𝑝}) = (𝑣 “ {𝑃}))
1051043anassrs 1282 . . . . . 6 ((((𝑃𝑋 ∧ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) ∧ 𝑝 = 𝑃) ∧ 𝑣𝑈) → (𝑣 “ {𝑝}) = (𝑣 “ {𝑃}))
106101, 105mpteq2da 4671 . . . . 5 (((𝑃𝑋 ∧ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) ∧ 𝑝 = 𝑃) → (𝑣𝑈 ↦ (𝑣 “ {𝑝})) = (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
107106rneqd 5274 . . . 4 (((𝑃𝑋 ∧ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) ∧ 𝑝 = 𝑃) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
108 simpl 472 . . . 4 ((𝑃𝑋 ∧ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) → 𝑃𝑋)
109 simpr 476 . . . 4 ((𝑃𝑋 ∧ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V)
11094, 107, 108, 109fvmptd 6197 . . 3 ((𝑃𝑋 ∧ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ∈ V) → (𝑁𝑃) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
11186, 93, 110syl2anc 691 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → (𝑁𝑃) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
11274, 89, 1113eqtr2d 2650 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  𝒫 cpw 4108  {csn 4125  cmpt 4643  ran crn 5039  cima 5041  cfv 5804  neicnei 20711  UnifOncust 21813  unifTopcutop 21844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-fi 8200  df-top 20521  df-nei 20712  df-ust 21814  df-utop 21845
This theorem is referenced by:  utopsnneip  21862
  Copyright terms: Public domain W3C validator