MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustincl Structured version   Visualization version   GIF version

Theorem ustincl 21821
Description: A uniform structure is closed under finite intersection. Condition FII of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 30-Nov-2017.)
Assertion
Ref Expression
ustincl ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊𝑈) → (𝑉𝑊) ∈ 𝑈)

Proof of Theorem ustincl
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6131 . . . . . . . 8 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
2 isust 21817 . . . . . . . 8 (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
31, 2syl 17 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
43ibi 255 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
54simp3d 1068 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))
6 sseq1 3589 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑣𝑤𝑉𝑤))
76imbi1d 330 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑣𝑤𝑤𝑈) ↔ (𝑉𝑤𝑤𝑈)))
87ralbidv 2969 . . . . . . 7 (𝑣 = 𝑉 → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ↔ ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈)))
9 ineq1 3769 . . . . . . . . 9 (𝑣 = 𝑉 → (𝑣𝑤) = (𝑉𝑤))
109eleq1d 2672 . . . . . . . 8 (𝑣 = 𝑉 → ((𝑣𝑤) ∈ 𝑈 ↔ (𝑉𝑤) ∈ 𝑈))
1110ralbidv 2969 . . . . . . 7 (𝑣 = 𝑉 → (∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ↔ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈))
12 sseq2 3590 . . . . . . . 8 (𝑣 = 𝑉 → (( I ↾ 𝑋) ⊆ 𝑣 ↔ ( I ↾ 𝑋) ⊆ 𝑉))
13 cnveq 5218 . . . . . . . . 9 (𝑣 = 𝑉𝑣 = 𝑉)
1413eleq1d 2672 . . . . . . . 8 (𝑣 = 𝑉 → (𝑣𝑈𝑉𝑈))
15 sseq2 3590 . . . . . . . . 9 (𝑣 = 𝑉 → ((𝑤𝑤) ⊆ 𝑣 ↔ (𝑤𝑤) ⊆ 𝑉))
1615rexbidv 3034 . . . . . . . 8 (𝑣 = 𝑉 → (∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣 ↔ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉))
1712, 14, 163anbi123d 1391 . . . . . . 7 (𝑣 = 𝑉 → ((( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣) ↔ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉)))
188, 11, 173anbi123d 1391 . . . . . 6 (𝑣 = 𝑉 → ((∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉))))
1918rspcv 3278 . . . . 5 (𝑉𝑈 → (∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉))))
205, 19mpan9 485 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉𝑉𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉)))
2120simp2d 1067 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈)
22 ineq2 3770 . . . . 5 (𝑤 = 𝑊 → (𝑉𝑤) = (𝑉𝑊))
2322eleq1d 2672 . . . 4 (𝑤 = 𝑊 → ((𝑉𝑤) ∈ 𝑈 ↔ (𝑉𝑊) ∈ 𝑈))
2423rspcv 3278 . . 3 (𝑊𝑈 → (∀𝑤𝑈 (𝑉𝑤) ∈ 𝑈 → (𝑉𝑊) ∈ 𝑈))
2521, 24mpan9 485 . 2 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑊𝑈) → (𝑉𝑊) ∈ 𝑈)
26253impa 1251 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊𝑈) → (𝑉𝑊) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108   I cid 4948   × cxp 5036  ccnv 5037  cres 5040  ccom 5042  cfv 5804  UnifOncust 21813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812  df-ust 21814
This theorem is referenced by:  ustexsym  21829  trust  21843  utoptop  21848  restutopopn  21852  ustuqtop2  21856
  Copyright terms: Public domain W3C validator