Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uspreg | Structured version Visualization version GIF version |
Description: If a uniform space is Hausdorff, it is regular. Proposition 3 of [BourbakiTop1] p. II.5. (Contributed by Thierry Arnoux, 4-Jan-2018.) |
Ref | Expression |
---|---|
uspreg.1 | ⊢ 𝐽 = (TopOpen‘𝑊) |
Ref | Expression |
---|---|
uspreg | ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2610 | . . . . 5 ⊢ (UnifSt‘𝑊) = (UnifSt‘𝑊) | |
3 | uspreg.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝑊) | |
4 | 1, 2, 3 | isusp 21875 | . . . 4 ⊢ (𝑊 ∈ UnifSp ↔ ((UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑊)))) |
5 | 4 | simprbi 479 | . . 3 ⊢ (𝑊 ∈ UnifSp → 𝐽 = (unifTop‘(UnifSt‘𝑊))) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 = (unifTop‘(UnifSt‘𝑊))) |
7 | 4 | simplbi 475 | . . . 4 ⊢ (𝑊 ∈ UnifSp → (UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊))) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → (UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊))) |
9 | simpr 476 | . . . 4 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Haus) | |
10 | 6, 9 | eqeltrrd 2689 | . . 3 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Haus) |
11 | eqid 2610 | . . . 4 ⊢ (unifTop‘(UnifSt‘𝑊)) = (unifTop‘(UnifSt‘𝑊)) | |
12 | 11 | utopreg 21866 | . . 3 ⊢ (((UnifSt‘𝑊) ∈ (UnifOn‘(Base‘𝑊)) ∧ (unifTop‘(UnifSt‘𝑊)) ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Reg) |
13 | 8, 10, 12 | syl2anc 691 | . 2 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → (unifTop‘(UnifSt‘𝑊)) ∈ Reg) |
14 | 6, 13 | eqeltrd 2688 | 1 ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ‘cfv 5804 Basecbs 15695 TopOpenctopn 15905 Hauscha 20922 Regcreg 20923 UnifOncust 21813 unifTopcutop 21844 UnifStcuss 21867 UnifSpcusp 21868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-fin 7845 df-fi 8200 df-topgen 15927 df-top 20521 df-bases 20522 df-topon 20523 df-cld 20633 df-ntr 20634 df-cls 20635 df-nei 20712 df-cn 20841 df-cnp 20842 df-reg 20930 df-tx 21175 df-ust 21814 df-utop 21845 df-usp 21871 |
This theorem is referenced by: cnextucn 21917 rrhre 29393 |
Copyright terms: Public domain | W3C validator |