Step | Hyp | Ref
| Expression |
1 | | crctprop 40998 |
. . 3
⊢ (𝐹(CircuitS‘𝐺)𝑃 → (𝐹(TrailS‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))) |
2 | | trlis1wlk 40905 |
. . . . . . 7
⊢ (𝐹(TrailS‘𝐺)𝑃 → 𝐹(1Walks‘𝐺)𝑃) |
3 | | wlkv 40815 |
. . . . . . . 8
⊢ (𝐹(1Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
4 | | isTrl 40904 |
. . . . . . . . 9
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(TrailS‘𝐺)𝑃 ↔ (𝐹(1Walks‘𝐺)𝑃 ∧ Fun ◡𝐹))) |
5 | | uspgrupgr 40406 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph
) |
6 | | eqid 2610 |
. . . . . . . . . . . . . . . . . 18
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
7 | | eqid 2610 |
. . . . . . . . . . . . . . . . . 18
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
8 | 6, 7 | upgriswlk 40849 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
9 | | preq2 4213 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑃‘2) = (𝑃‘0) → {(𝑃‘1), (𝑃‘2)} = {(𝑃‘1), (𝑃‘0)}) |
10 | | prcom 4211 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ {(𝑃‘1), (𝑃‘0)} = {(𝑃‘0), (𝑃‘1)} |
11 | 9, 10 | syl6eq 2660 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑃‘2) = (𝑃‘0) → {(𝑃‘1), (𝑃‘2)} = {(𝑃‘0), (𝑃‘1)}) |
12 | 11 | eqcoms 2618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑃‘0) = (𝑃‘2) → {(𝑃‘1), (𝑃‘2)} = {(𝑃‘0), (𝑃‘1)}) |
13 | 12 | eqeq2d 2620 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃‘0) = (𝑃‘2) → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} ↔ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)})) |
14 | 13 | anbi2d 736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃‘0) = (𝑃‘2) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}))) |
15 | 14 | ad2antrr 758 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑃‘0) = (𝑃‘2) ∧ ((#‘𝐹) = 2 ∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph ))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}))) |
16 | | eqtr3 2631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}) → ((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1))) |
17 | 6, 7 | uspgrf 40384 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝐺 ∈ USPGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(#‘𝑥) ≤
2}) |
18 | 17 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((Fun
◡𝐹 ∧ 𝐺 ∈ USPGraph ) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(#‘𝑥) ≤
2}) |
19 | 18 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((#‘𝐹) = 2
∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph )) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(#‘𝑥) ≤
2}) |
20 | 19 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((#‘𝐹) = 2
∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph )) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(#‘𝑥) ≤
2}) |
21 | | wrdf 13165 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝐹 ∈ Word dom
(iEdg‘𝐺) → 𝐹:(0..^(#‘𝐹))⟶dom (iEdg‘𝐺)) |
22 | | df-f1 5809 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ↔ (𝐹:(0..^(#‘𝐹))⟶dom (iEdg‘𝐺) ∧ Fun ◡𝐹)) |
23 | 22 | simplbi2 653 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝐹:(0..^(#‘𝐹))⟶dom (iEdg‘𝐺) → (Fun ◡𝐹 → 𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺))) |
24 | 21, 23 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝐹 ∈ Word dom
(iEdg‘𝐺) → (Fun
◡𝐹 → 𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺))) |
25 | 24 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (Fun
◡𝐹 → (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺))) |
26 | 25 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((Fun
◡𝐹 ∧ 𝐺 ∈ USPGraph ) → (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺))) |
27 | 26 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((#‘𝐹) = 2
∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph )) → (𝐹 ∈ Word dom
(iEdg‘𝐺) → 𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺))) |
28 | 27 | imp 444 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((#‘𝐹) = 2
∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph )) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → 𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺)) |
29 | | 2nn 11062 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ 2 ∈
ℕ |
30 | | lbfzo0 12375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (0 ∈
(0..^2) ↔ 2 ∈ ℕ) |
31 | 29, 30 | mpbir 220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 0 ∈
(0..^2) |
32 | | 1nn0 11185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ 1 ∈
ℕ0 |
33 | | 1lt2 11071 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ 1 <
2 |
34 | | elfzo0 12376 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (1 ∈
(0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1
< 2)) |
35 | 32, 29, 33, 34 | mpbir3an 1237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 1 ∈
(0..^2) |
36 | 31, 35 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (0 ∈
(0..^2) ∧ 1 ∈ (0..^2)) |
37 | | oveq2 6557 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((#‘𝐹) = 2
→ (0..^(#‘𝐹)) =
(0..^2)) |
38 | 37 | eleq2d 2673 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((#‘𝐹) = 2
→ (0 ∈ (0..^(#‘𝐹)) ↔ 0 ∈
(0..^2))) |
39 | 37 | eleq2d 2673 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((#‘𝐹) = 2
→ (1 ∈ (0..^(#‘𝐹)) ↔ 1 ∈
(0..^2))) |
40 | 38, 39 | anbi12d 743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((#‘𝐹) = 2
→ ((0 ∈ (0..^(#‘𝐹)) ∧ 1 ∈ (0..^(#‘𝐹))) ↔ (0 ∈ (0..^2)
∧ 1 ∈ (0..^2)))) |
41 | 36, 40 | mpbiri 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((#‘𝐹) = 2
→ (0 ∈ (0..^(#‘𝐹)) ∧ 1 ∈ (0..^(#‘𝐹)))) |
42 | 41 | ad2antrr 758 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((#‘𝐹) = 2
∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph )) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (0 ∈
(0..^(#‘𝐹)) ∧ 1
∈ (0..^(#‘𝐹)))) |
43 | | f1cofveqaeq 40323 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(#‘𝑥) ≤ 2} ∧
𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺)) ∧ (0 ∈ (0..^(#‘𝐹)) ∧ 1 ∈
(0..^(#‘𝐹)))) →
(((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → 0 = 1)) |
44 | 20, 28, 42, 43 | syl21anc 1317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((#‘𝐹) = 2
∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph )) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → 0 = 1)) |
45 | | 0ne1 10965 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 0 ≠
1 |
46 | | eqneqall 2793 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (0 = 1
→ (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘2))) |
47 | 44, 45, 46 | syl6mpi 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((#‘𝐹) = 2
∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph )) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝑃‘0) ≠ (𝑃‘2))) |
48 | 47 | adantll 746 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑃‘0) = (𝑃‘2) ∧ ((#‘𝐹) = 2 ∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph ))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝑃‘0) ≠ (𝑃‘2))) |
49 | 16, 48 | syl5 33 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑃‘0) = (𝑃‘2) ∧ ((#‘𝐹) = 2 ∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph ))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}) → (𝑃‘0) ≠ (𝑃‘2))) |
50 | 15, 49 | sylbid 229 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑃‘0) = (𝑃‘2) ∧ ((#‘𝐹) = 2 ∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph ))) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))) |
51 | 50 | expimpd 627 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑃‘0) = (𝑃‘2) ∧ ((#‘𝐹) = 2 ∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph ))) → ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧
(((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))) |
52 | 51 | ex 449 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃‘0) = (𝑃‘2) → (((#‘𝐹) = 2 ∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph )) → ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧
(((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))) |
53 | | 2a1 28 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃‘0) ≠ (𝑃‘2) →
(((#‘𝐹) = 2 ∧
(Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph )) → ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧
(((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))) |
54 | 52, 53 | pm2.61ine 2865 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((#‘𝐹) = 2
∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph )) → ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧
(((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))) |
55 | | fzo0to2pr 12420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (0..^2) =
{0, 1} |
56 | 37, 55 | syl6eq 2660 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((#‘𝐹) = 2
→ (0..^(#‘𝐹)) =
{0, 1}) |
57 | 56 | raleqdv 3121 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((#‘𝐹) = 2
→ (∀𝑘 ∈
(0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
58 | | 2wlklem 26094 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∀𝑘 ∈
{0, 1} ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
59 | 57, 58 | syl6bb 275 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((#‘𝐹) = 2
→ (∀𝑘 ∈
(0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) |
60 | 59 | anbi2d 736 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((#‘𝐹) = 2
→ ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧
∀𝑘 ∈
(0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))) |
61 | | fveq2 6103 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((#‘𝐹) = 2
→ (𝑃‘(#‘𝐹)) = (𝑃‘2)) |
62 | 61 | neeq2d 2842 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((#‘𝐹) = 2
→ ((𝑃‘0) ≠
(𝑃‘(#‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘2))) |
63 | 60, 62 | imbi12d 333 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((#‘𝐹) = 2
→ (((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧
∀𝑘 ∈
(0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))) ↔ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))) |
64 | 63 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((#‘𝐹) = 2
∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph )) → (((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧
∀𝑘 ∈
(0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))) ↔ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2)))) |
65 | 54, 64 | mpbird 246 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((#‘𝐹) = 2
∧ (Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph )) → ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧
∀𝑘 ∈
(0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))) |
66 | 65 | ex 449 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((#‘𝐹) = 2
→ ((Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph ) → ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧
∀𝑘 ∈
(0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))))) |
67 | 66 | com13 86 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧
∀𝑘 ∈
(0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → ((Fun ◡𝐹 ∧ 𝐺 ∈ USPGraph ) → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))))) |
68 | 67 | expd 451 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧
∀𝑘 ∈
(0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (Fun ◡𝐹 → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))))) |
69 | 68 | 3adant2 1073 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (Fun ◡𝐹 → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))))) |
70 | 8, 69 | syl6bi 242 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 → (Fun ◡𝐹 → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))))))) |
71 | 70 | 3expib 1260 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ UPGraph → ((𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 → (Fun ◡𝐹 → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))))))) |
72 | 5, 71 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ USPGraph → ((𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 → (Fun ◡𝐹 → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))))))) |
73 | 72 | com25 97 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USPGraph → (𝐹(1Walks‘𝐺)𝑃 → (Fun ◡𝐹 → ((𝐹 ∈ V ∧ 𝑃 ∈ V) → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))))))) |
74 | 73 | pm2.43i 50 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USPGraph → (𝐹(1Walks‘𝐺)𝑃 → (Fun ◡𝐹 → ((𝐹 ∈ V ∧ 𝑃 ∈ V) → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))))))) |
75 | 74 | com14 94 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 → (Fun ◡𝐹 → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))))))) |
76 | 75 | 3adant1 1072 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 → (Fun ◡𝐹 → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))))))) |
77 | 76 | impd 446 |
. . . . . . . . 9
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → ((𝐹(1Walks‘𝐺)𝑃 ∧ Fun ◡𝐹) → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))))) |
78 | 4, 77 | sylbid 229 |
. . . . . . . 8
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(TrailS‘𝐺)𝑃 → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))))) |
79 | 3, 78 | syl 17 |
. . . . . . 7
⊢ (𝐹(1Walks‘𝐺)𝑃 → (𝐹(TrailS‘𝐺)𝑃 → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))))) |
80 | 2, 79 | mpcom 37 |
. . . . . 6
⊢ (𝐹(TrailS‘𝐺)𝑃 → (𝐺 ∈ USPGraph → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))))) |
81 | 80 | imp 444 |
. . . . 5
⊢ ((𝐹(TrailS‘𝐺)𝑃 ∧ 𝐺 ∈ USPGraph ) → ((#‘𝐹) = 2 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))) |
82 | 81 | necon2d 2805 |
. . . 4
⊢ ((𝐹(TrailS‘𝐺)𝑃 ∧ 𝐺 ∈ USPGraph ) → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (#‘𝐹) ≠ 2)) |
83 | 82 | impancom 455 |
. . 3
⊢ ((𝐹(TrailS‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (𝐺 ∈ USPGraph → (#‘𝐹) ≠ 2)) |
84 | 1, 83 | syl 17 |
. 2
⊢ (𝐹(CircuitS‘𝐺)𝑃 → (𝐺 ∈ USPGraph → (#‘𝐹) ≠ 2)) |
85 | 84 | impcom 445 |
1
⊢ ((𝐺 ∈ USPGraph ∧ 𝐹(CircuitS‘𝐺)𝑃) → (#‘𝐹) ≠ 2) |