Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uslisushgra Structured version   Visualization version   GIF version

Theorem uslisushgra 25892
 Description: An undirected simple graph with loops is an undirected simple hypergraph. (Contributed by AV, 19-Jan-2020.)
Assertion
Ref Expression
uslisushgra (𝑉 USLGrph 𝐸𝑉 USHGrph 𝐸)

Proof of Theorem uslisushgra
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uslgrav 25866 . 2 (𝑉 USLGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
2 isuslgra 25872 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 USLGrph 𝐸𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
3 ssrab2 3650 . . . . 5 {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ⊆ (𝒫 𝑉 ∖ {∅})
4 f1ss 6019 . . . . 5 ((𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ∧ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ⊆ (𝒫 𝑉 ∖ {∅})) → 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅}))
53, 4mpan2 703 . . . 4 (𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅}))
62, 5syl6bi 242 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 USLGrph 𝐸𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
7 isushgra 25830 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 USHGrph 𝐸𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
86, 7sylibrd 248 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 USLGrph 𝐸𝑉 USHGrph 𝐸))
91, 8mpcom 37 1 (𝑉 USLGrph 𝐸𝑉 USHGrph 𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∈ wcel 1977  {crab 2900  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  dom cdm 5038  –1-1→wf1 5801  ‘cfv 5804   ≤ cle 9954  2c2 10947  #chash 12979   USHGrph cushg 25820   USLGrph cuslg 25858 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-ushgra 25822  df-uslgra 25861 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator