MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usisuslgra Structured version   Visualization version   GIF version

Theorem usisuslgra 25894
Description: An undirected simple graph without loops is an undirected simple graph with loops. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Proof shortened by Alexander van der Vekens, 20-Mar-2018.)
Assertion
Ref Expression
usisuslgra (𝑉 USGrph 𝐸𝑉 USLGrph 𝐸)

Proof of Theorem usisuslgra
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 usgrav 25867 . 2 (𝑉 USGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
2 isusgra 25873 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 USGrph 𝐸𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2}))
3 2re 10967 . . . . . . . 8 2 ∈ ℝ
43eqlei2 10027 . . . . . . 7 ((#‘𝑥) = 2 → (#‘𝑥) ≤ 2)
54a1i 11 . . . . . 6 (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) → ((#‘𝑥) = 2 → (#‘𝑥) ≤ 2))
65ss2rabi 3647 . . . . 5 {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}
7 f1ss 6019 . . . . 5 ((𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2} ∧ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) → 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
86, 7mpan2 703 . . . 4 (𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2} → 𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
92, 8syl6bi 242 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 USGrph 𝐸𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
10 isuslgra 25872 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 USLGrph 𝐸𝐸:dom 𝐸1-1→{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
119, 10sylibrd 248 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 USGrph 𝐸𝑉 USLGrph 𝐸))
121, 11mpcom 37 1 (𝑉 USGrph 𝐸𝑉 USLGrph 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  dom cdm 5038  1-1wf1 5801  cfv 5804  cle 9954  2c2 10947  #chash 12979   USLGrph cuslg 25858   USGrph cusg 25859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-2 10956  df-uslgra 25861  df-usgra 25862
This theorem is referenced by:  usisumgra  25895  usgraexmpledg  25932
  Copyright terms: Public domain W3C validator