MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ushgrunop Structured version   Visualization version   GIF version

Theorem ushgrunop 25743
Description: The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If 𝑉, 𝐸 and 𝑉, 𝐹 are simple hypergraphs, then 𝑉, 𝐸𝐹 is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
ushgrun.g (𝜑𝐺 ∈ USHGraph )
ushgrun.h (𝜑𝐻 ∈ USHGraph )
ushgrun.e 𝐸 = (iEdg‘𝐺)
ushgrun.f 𝐹 = (iEdg‘𝐻)
ushgrun.vg 𝑉 = (Vtx‘𝐺)
ushgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
ushgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
ushgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph )

Proof of Theorem ushgrunop
StepHypRef Expression
1 ushgrun.g . . 3 (𝜑𝐺 ∈ USHGraph )
2 ushgruhgr 25735 . . 3 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph )
31, 2syl 17 . 2 (𝜑𝐺 ∈ UHGraph )
4 ushgrun.h . . 3 (𝜑𝐻 ∈ USHGraph )
5 ushgruhgr 25735 . . 3 (𝐻 ∈ USHGraph → 𝐻 ∈ UHGraph )
64, 5syl 17 . 2 (𝜑𝐻 ∈ UHGraph )
7 ushgrun.e . 2 𝐸 = (iEdg‘𝐺)
8 ushgrun.f . 2 𝐹 = (iEdg‘𝐻)
9 ushgrun.vg . 2 𝑉 = (Vtx‘𝐺)
10 ushgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
11 ushgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
123, 6, 7, 8, 9, 10, 11uhgrunop 25741 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UHGraph )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  cun 3538  cin 3539  c0 3874  cop 4131  dom cdm 5038  cfv 5804  Vtxcvtx 25673  iEdgciedg 25674   UHGraph cuhgr 25722   USHGraph cushgr 25723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fv 5812  df-1st 7059  df-2nd 7060  df-vtx 25675  df-iedg 25676  df-uhgr 25724  df-ushgr 25725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator