Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ushgrun | Structured version Visualization version GIF version |
Description: The union 𝑈 of two (undirected) simple hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a (not necessarily simple) hypergraph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.) (Revised by AV, 24-Oct-2021.) |
Ref | Expression |
---|---|
ushgrun.g | ⊢ (𝜑 → 𝐺 ∈ USHGraph ) |
ushgrun.h | ⊢ (𝜑 → 𝐻 ∈ USHGraph ) |
ushgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
ushgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
ushgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
ushgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
ushgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
ushgrun.u | ⊢ (𝜑 → 𝑈 ∈ 𝑊) |
ushgrun.v | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
ushgrun.un | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) |
Ref | Expression |
---|---|
ushgrun | ⊢ (𝜑 → 𝑈 ∈ UHGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ushgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ USHGraph ) | |
2 | ushgruhgr 25735 | . . 3 ⊢ (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph ) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ UHGraph ) |
4 | ushgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ USHGraph ) | |
5 | ushgruhgr 25735 | . . 3 ⊢ (𝐻 ∈ USHGraph → 𝐻 ∈ UHGraph ) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐻 ∈ UHGraph ) |
7 | ushgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
8 | ushgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
9 | ushgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | ushgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
11 | ushgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
12 | ushgrun.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑊) | |
13 | ushgrun.v | . 2 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
14 | ushgrun.un | . 2 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) | |
15 | 3, 6, 7, 8, 9, 10, 11, 12, 13, 14 | uhgrun 25740 | 1 ⊢ (𝜑 → 𝑈 ∈ UHGraph ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ∪ cun 3538 ∩ cin 3539 ∅c0 3874 dom cdm 5038 ‘cfv 5804 Vtxcvtx 25673 iEdgciedg 25674 UHGraph cuhgr 25722 USHGraph cushgr 25723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fv 5812 df-uhgr 25724 df-ushgr 25725 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |