Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrf1oedg Structured version   Visualization version   GIF version

Theorem usgrf1oedg 40434
Description: The edge function of a simple graph is a 1-1 function onto the set of edges. (Contributed by by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgrf1oedg.i 𝐼 = (iEdg‘𝐺)
usgrf1oedg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgrf1oedg (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1-onto𝐸)

Proof of Theorem usgrf1oedg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 usgrf1oedg.i . . . 4 𝐼 = (iEdg‘𝐺)
31, 2usgrf 40385 . . 3 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) = 2})
4 f1f1orn 6061 . . 3 (𝐼:dom 𝐼1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) = 2} → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
53, 4syl 17 . 2 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
6 usgrf1oedg.e . . . 4 𝐸 = (Edg‘𝐺)
7 edgaval 25794 . . . . 5 (𝐺 ∈ USGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
82eqcomi 2619 . . . . . 6 (iEdg‘𝐺) = 𝐼
98rneqi 5273 . . . . 5 ran (iEdg‘𝐺) = ran 𝐼
107, 9syl6eq 2660 . . . 4 (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐼)
116, 10syl5eq 2656 . . 3 (𝐺 ∈ USGraph → 𝐸 = ran 𝐼)
12 f1oeq3 6042 . . 3 (𝐸 = ran 𝐼 → (𝐼:dom 𝐼1-1-onto𝐸𝐼:dom 𝐼1-1-onto→ran 𝐼))
1311, 12syl 17 . 2 (𝐺 ∈ USGraph → (𝐼:dom 𝐼1-1-onto𝐸𝐼:dom 𝐼1-1-onto→ran 𝐼))
145, 13mpbird 246 1 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1-onto𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  {crab 2900  cdif 3537  c0 3874  𝒫 cpw 4108  {csn 4125  dom cdm 5038  ran crn 5039  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804  2c2 10947  #chash 12979  Vtxcvtx 25673  iEdgciedg 25674  Edgcedga 25792   USGraph cusgr 40379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-edga 25793  df-usgr 40381
This theorem is referenced by:  usgr2trlncl  40966
  Copyright terms: Public domain W3C validator