Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrf1oedg | Structured version Visualization version GIF version |
Description: The edge function of a simple graph is a 1-1 function onto the set of edges. (Contributed by by AV, 18-Oct-2020.) |
Ref | Expression |
---|---|
usgrf1oedg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
usgrf1oedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
usgrf1oedg | ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | usgrf1oedg.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 1, 2 | usgrf 40385 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) = 2}) |
4 | f1f1orn 6061 | . . 3 ⊢ (𝐼:dom 𝐼–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) = 2} → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
6 | usgrf1oedg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
7 | edgaval 25794 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) | |
8 | 2 | eqcomi 2619 | . . . . . 6 ⊢ (iEdg‘𝐺) = 𝐼 |
9 | 8 | rneqi 5273 | . . . . 5 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
10 | 7, 9 | syl6eq 2660 | . . . 4 ⊢ (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐼) |
11 | 6, 10 | syl5eq 2656 | . . 3 ⊢ (𝐺 ∈ USGraph → 𝐸 = ran 𝐼) |
12 | f1oeq3 6042 | . . 3 ⊢ (𝐸 = ran 𝐼 → (𝐼:dom 𝐼–1-1-onto→𝐸 ↔ 𝐼:dom 𝐼–1-1-onto→ran 𝐼)) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐼:dom 𝐼–1-1-onto→𝐸 ↔ 𝐼:dom 𝐼–1-1-onto→ran 𝐼)) |
14 | 5, 13 | mpbird 246 | 1 ⊢ (𝐺 ∈ USGraph → 𝐼:dom 𝐼–1-1-onto→𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 = wceq 1475 ∈ wcel 1977 {crab 2900 ∖ cdif 3537 ∅c0 3874 𝒫 cpw 4108 {csn 4125 dom cdm 5038 ran crn 5039 –1-1→wf1 5801 –1-1-onto→wf1o 5803 ‘cfv 5804 2c2 10947 #chash 12979 Vtxcvtx 25673 iEdgciedg 25674 Edgcedga 25792 USGraph cusgr 40379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-edga 25793 df-usgr 40381 |
This theorem is referenced by: usgr2trlncl 40966 |
Copyright terms: Public domain | W3C validator |