Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgredgffibi Structured version   Visualization version   GIF version

Theorem usgredgffibi 40543
 Description: The number of edges in a simple graph is finite iff its edge function is finite. (Contributed by AV, 10-Jan-2020.) (Revised by AV, 22-Oct-2020.)
Hypotheses
Ref Expression
usgredgffibi.I 𝐼 = (iEdg‘𝐺)
usgredgffibi.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgredgffibi (𝐺 ∈ USGraph → (𝐸 ∈ Fin ↔ 𝐼 ∈ Fin))

Proof of Theorem usgredgffibi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 usgredgffibi.e . . . 4 𝐸 = (Edg‘𝐺)
2 edgaval 25794 . . . . 5 (𝐺 ∈ USGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
3 usgredgffibi.I . . . . . . 7 𝐼 = (iEdg‘𝐺)
43eqcomi 2619 . . . . . 6 (iEdg‘𝐺) = 𝐼
54rneqi 5273 . . . . 5 ran (iEdg‘𝐺) = ran 𝐼
62, 5syl6eq 2660 . . . 4 (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐼)
71, 6syl5eq 2656 . . 3 (𝐺 ∈ USGraph → 𝐸 = ran 𝐼)
87eleq1d 2672 . 2 (𝐺 ∈ USGraph → (𝐸 ∈ Fin ↔ ran 𝐼 ∈ Fin))
9 fvex 6113 . . . 4 (iEdg‘𝐺) ∈ V
103, 9eqeltri 2684 . . 3 𝐼 ∈ V
11 eqid 2610 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
1211, 3usgrfs 40387 . . 3 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (#‘𝑥) = 2})
13 f1vrnfibi 8134 . . 3 ((𝐼 ∈ V ∧ 𝐼:dom 𝐼1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (#‘𝑥) = 2}) → (𝐼 ∈ Fin ↔ ran 𝐼 ∈ Fin))
1410, 12, 13sylancr 694 . 2 (𝐺 ∈ USGraph → (𝐼 ∈ Fin ↔ ran 𝐼 ∈ Fin))
158, 14bitr4d 270 1 (𝐺 ∈ USGraph → (𝐸 ∈ Fin ↔ 𝐼 ∈ Fin))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475   ∈ wcel 1977  {crab 2900  Vcvv 3173  𝒫 cpw 4108  dom cdm 5038  ran crn 5039  –1-1→wf1 5801  ‘cfv 5804  Fincfn 7841  2c2 10947  #chash 12979  Vtxcvtx 25673  iEdgciedg 25674  Edgcedga 25792   USGraph cusgr 40379 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-edga 25793  df-usgr 40381 This theorem is referenced by:  fusgrfisbase  40547  fusgrfisstep  40548  fusgrfis  40549  vtxdgfusgrf  40712
 Copyright terms: Public domain W3C validator