Step | Hyp | Ref
| Expression |
1 | | usgredg3.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | usgredg3.e |
. . . 4
⊢ 𝐸 = (iEdg‘𝐺) |
3 | 1, 2 | usgredg3 40443 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) |
4 | | eleq2 2677 |
. . . . . . . 8
⊢ ((𝐸‘𝑋) = {𝑥, 𝑧} → (𝑌 ∈ (𝐸‘𝑋) ↔ 𝑌 ∈ {𝑥, 𝑧})) |
5 | 4 | adantl 481 |
. . . . . . 7
⊢ ((𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}) → (𝑌 ∈ (𝐸‘𝑋) ↔ 𝑌 ∈ {𝑥, 𝑧})) |
6 | 5 | adantl 481 |
. . . . . 6
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → (𝑌 ∈ (𝐸‘𝑋) ↔ 𝑌 ∈ {𝑥, 𝑧})) |
7 | | elpri 4145 |
. . . . . . . 8
⊢ (𝑌 ∈ {𝑥, 𝑧} → (𝑌 = 𝑥 ∨ 𝑌 = 𝑧)) |
8 | | simplrr 797 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → 𝑧 ∈ 𝑉) |
9 | 8 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → 𝑧 ∈ 𝑉) |
10 | | preq2 4213 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → {𝑥, 𝑦} = {𝑥, 𝑧}) |
11 | 10 | eqeq2d 2620 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → ({𝑥, 𝑧} = {𝑥, 𝑦} ↔ {𝑥, 𝑧} = {𝑥, 𝑧})) |
12 | 11 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) ∧ 𝑦 = 𝑧) → ({𝑥, 𝑧} = {𝑥, 𝑦} ↔ {𝑥, 𝑧} = {𝑥, 𝑧})) |
13 | | eqidd 2611 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → {𝑥, 𝑧} = {𝑥, 𝑧}) |
14 | 9, 12, 13 | rspcedvd 3289 |
. . . . . . . . . . 11
⊢ ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → ∃𝑦 ∈ 𝑉 {𝑥, 𝑧} = {𝑥, 𝑦}) |
15 | | simprr 792 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → (𝐸‘𝑋) = {𝑥, 𝑧}) |
16 | | preq1 4212 |
. . . . . . . . . . . . 13
⊢ (𝑌 = 𝑥 → {𝑌, 𝑦} = {𝑥, 𝑦}) |
17 | 15, 16 | eqeqan12rd 2628 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → ((𝐸‘𝑋) = {𝑌, 𝑦} ↔ {𝑥, 𝑧} = {𝑥, 𝑦})) |
18 | 17 | rexbidv 3034 |
. . . . . . . . . . 11
⊢ ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → (∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦} ↔ ∃𝑦 ∈ 𝑉 {𝑥, 𝑧} = {𝑥, 𝑦})) |
19 | 14, 18 | mpbird 246 |
. . . . . . . . . 10
⊢ ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}) |
20 | 19 | ex 449 |
. . . . . . . . 9
⊢ (𝑌 = 𝑥 → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦})) |
21 | | simplrl 796 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → 𝑥 ∈ 𝑉) |
22 | 21 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → 𝑥 ∈ 𝑉) |
23 | | preq2 4213 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → {𝑧, 𝑦} = {𝑧, 𝑥}) |
24 | 23 | eqeq2d 2620 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → ({𝑥, 𝑧} = {𝑧, 𝑦} ↔ {𝑥, 𝑧} = {𝑧, 𝑥})) |
25 | 24 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) ∧ 𝑦 = 𝑥) → ({𝑥, 𝑧} = {𝑧, 𝑦} ↔ {𝑥, 𝑧} = {𝑧, 𝑥})) |
26 | | prcom 4211 |
. . . . . . . . . . . . 13
⊢ {𝑥, 𝑧} = {𝑧, 𝑥} |
27 | 26 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → {𝑥, 𝑧} = {𝑧, 𝑥}) |
28 | 22, 25, 27 | rspcedvd 3289 |
. . . . . . . . . . 11
⊢ ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → ∃𝑦 ∈ 𝑉 {𝑥, 𝑧} = {𝑧, 𝑦}) |
29 | | preq1 4212 |
. . . . . . . . . . . . 13
⊢ (𝑌 = 𝑧 → {𝑌, 𝑦} = {𝑧, 𝑦}) |
30 | 15, 29 | eqeqan12rd 2628 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → ((𝐸‘𝑋) = {𝑌, 𝑦} ↔ {𝑥, 𝑧} = {𝑧, 𝑦})) |
31 | 30 | rexbidv 3034 |
. . . . . . . . . . 11
⊢ ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → (∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦} ↔ ∃𝑦 ∈ 𝑉 {𝑥, 𝑧} = {𝑧, 𝑦})) |
32 | 28, 31 | mpbird 246 |
. . . . . . . . . 10
⊢ ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}) |
33 | 32 | ex 449 |
. . . . . . . . 9
⊢ (𝑌 = 𝑧 → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦})) |
34 | 20, 33 | jaoi 393 |
. . . . . . . 8
⊢ ((𝑌 = 𝑥 ∨ 𝑌 = 𝑧) → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦})) |
35 | 7, 34 | syl 17 |
. . . . . . 7
⊢ (𝑌 ∈ {𝑥, 𝑧} → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦})) |
36 | 35 | com12 32 |
. . . . . 6
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → (𝑌 ∈ {𝑥, 𝑧} → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦})) |
37 | 6, 36 | sylbid 229 |
. . . . 5
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → (𝑌 ∈ (𝐸‘𝑋) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦})) |
38 | 37 | ex 449 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}) → (𝑌 ∈ (𝐸‘𝑋) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}))) |
39 | 38 | rexlimdvva 3020 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (∃𝑥 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}) → (𝑌 ∈ (𝐸‘𝑋) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}))) |
40 | 3, 39 | mpd 15 |
. 2
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (𝑌 ∈ (𝐸‘𝑋) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦})) |
41 | 40 | 3impia 1253 |
1
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ (𝐸‘𝑋)) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}) |