Proof of Theorem usgraidx2vlem2
Step | Hyp | Ref
| Expression |
1 | | fveq2 6103 |
. . . . . 6
⊢ (𝑥 = 𝑌 → (𝐸‘𝑥) = (𝐸‘𝑌)) |
2 | 1 | eleq2d 2673 |
. . . . 5
⊢ (𝑥 = 𝑌 → (𝑁 ∈ (𝐸‘𝑥) ↔ 𝑁 ∈ (𝐸‘𝑌))) |
3 | | usgraidx2v.a |
. . . . 5
⊢ 𝐴 = {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} |
4 | 2, 3 | elrab2 3333 |
. . . 4
⊢ (𝑌 ∈ 𝐴 ↔ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌))) |
5 | 4 | biimpi 205 |
. . 3
⊢ (𝑌 ∈ 𝐴 → (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌))) |
6 | | usgraedgreu 25917 |
. . . . . . 7
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)) → ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑁, 𝑧}) |
7 | 6 | 3expb 1258 |
. . . . . 6
⊢ ((𝑉 USGrph 𝐸 ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌))) → ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑁, 𝑧}) |
8 | 3 | usgraidx2vlem1 25920 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑌 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉) |
9 | 8 | adantlr 747 |
. . . . . . . . . . . . . . 15
⊢ (((𝑉 USGrph 𝐸 ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌))) ∧ 𝑌 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉) |
10 | 9 | adantll 746 |
. . . . . . . . . . . . . 14
⊢
(((∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝑉 USGrph 𝐸 ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉) |
11 | 10 | adantr 480 |
. . . . . . . . . . . . 13
⊢
((((∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝑉 USGrph 𝐸 ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) ∧ 𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁})) → (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉) |
12 | | eleq1 2676 |
. . . . . . . . . . . . . 14
⊢ (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐼 ∈ 𝑉 ↔ (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉)) |
13 | 12 | adantl 481 |
. . . . . . . . . . . . 13
⊢
((((∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝑉 USGrph 𝐸 ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) ∧ 𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁})) → (𝐼 ∈ 𝑉 ↔ (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) ∈ 𝑉)) |
14 | 11, 13 | mpbird 246 |
. . . . . . . . . . . 12
⊢
((((∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝑉 USGrph 𝐸 ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) ∧ 𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁})) → 𝐼 ∈ 𝑉) |
15 | | prcom 4211 |
. . . . . . . . . . . . . . . 16
⊢ {𝑁, 𝑧} = {𝑧, 𝑁} |
16 | 15 | eqeq2i 2622 |
. . . . . . . . . . . . . . 15
⊢ ((𝐸‘𝑌) = {𝑁, 𝑧} ↔ (𝐸‘𝑌) = {𝑧, 𝑁}) |
17 | 16 | reubii 3105 |
. . . . . . . . . . . . . 14
⊢
(∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ↔ ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) |
18 | 17 | biimpi 205 |
. . . . . . . . . . . . 13
⊢
(∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} → ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) |
19 | 18 | ad3antrrr 762 |
. . . . . . . . . . . 12
⊢
((((∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝑉 USGrph 𝐸 ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) ∧ 𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁})) → ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) |
20 | | preq1 4212 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝐼 → {𝑧, 𝑁} = {𝐼, 𝑁}) |
21 | 20 | eqeq2d 2620 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝐼 → ((𝐸‘𝑌) = {𝑧, 𝑁} ↔ (𝐸‘𝑌) = {𝐼, 𝑁})) |
22 | 21 | riota2 6533 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ ∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → ((𝐸‘𝑌) = {𝐼, 𝑁} ↔ (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) = 𝐼)) |
23 | 14, 19, 22 | syl2anc 691 |
. . . . . . . . . . 11
⊢
((((∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝑉 USGrph 𝐸 ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) ∧ 𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁})) → ((𝐸‘𝑌) = {𝐼, 𝑁} ↔ (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) = 𝐼)) |
24 | 23 | exbiri 650 |
. . . . . . . . . 10
⊢
(((∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝑉 USGrph 𝐸 ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → ((℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) = 𝐼 → (𝐸‘𝑌) = {𝐼, 𝑁}))) |
25 | 24 | com13 86 |
. . . . . . . . 9
⊢
((℩𝑧
∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) = 𝐼 → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (((∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝑉 USGrph 𝐸 ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) → (𝐸‘𝑌) = {𝐼, 𝑁}))) |
26 | 25 | eqcoms 2618 |
. . . . . . . 8
⊢ (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (((∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝑉 USGrph 𝐸 ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) → (𝐸‘𝑌) = {𝐼, 𝑁}))) |
27 | 26 | pm2.43i 50 |
. . . . . . 7
⊢ (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (((∃!𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝑉 USGrph 𝐸 ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) ∧ 𝑌 ∈ 𝐴) → (𝐸‘𝑌) = {𝐼, 𝑁})) |
28 | 27 | expdcom 454 |
. . . . . 6
⊢
((∃!𝑧 ∈
𝑉 (𝐸‘𝑌) = {𝑁, 𝑧} ∧ (𝑉 USGrph 𝐸 ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)))) → (𝑌 ∈ 𝐴 → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐸‘𝑌) = {𝐼, 𝑁}))) |
29 | 7, 28 | mpancom 700 |
. . . . 5
⊢ ((𝑉 USGrph 𝐸 ∧ (𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌))) → (𝑌 ∈ 𝐴 → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐸‘𝑌) = {𝐼, 𝑁}))) |
30 | 29 | expcom 450 |
. . . 4
⊢ ((𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)) → (𝑉 USGrph 𝐸 → (𝑌 ∈ 𝐴 → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐸‘𝑌) = {𝐼, 𝑁})))) |
31 | 30 | com23 84 |
. . 3
⊢ ((𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑌)) → (𝑌 ∈ 𝐴 → (𝑉 USGrph 𝐸 → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐸‘𝑌) = {𝐼, 𝑁})))) |
32 | 5, 31 | mpcom 37 |
. 2
⊢ (𝑌 ∈ 𝐴 → (𝑉 USGrph 𝐸 → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐸‘𝑌) = {𝐼, 𝑁}))) |
33 | 32 | impcom 445 |
1
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑌 ∈ 𝐴) → (𝐼 = (℩𝑧 ∈ 𝑉 (𝐸‘𝑌) = {𝑧, 𝑁}) → (𝐸‘𝑌) = {𝐼, 𝑁})) |