MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgra2adedgwlkonALT Structured version   Visualization version   GIF version

Theorem usgra2adedgwlkonALT 26144
Description: Alternate proof for usgra2adedgwlkon 26143, using usgra2adedgwlk 26142, but with a longer proof! In an undirected simple graph, two adjacent edges form a walk between two (different) vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
usgra2adedgspth.f 𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}
usgra2adedgspth.p 𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}
Assertion
Ref Expression
usgra2adedgwlkonALT (𝑉 USGrph 𝐸 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → 𝐹(𝐴(𝑉 WalkOn 𝐸)𝐶)𝑃))

Proof of Theorem usgra2adedgwlkonALT
StepHypRef Expression
1 usgra2adedgspth.f . . 3 𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}
2 usgra2adedgspth.p . . 3 𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}
31, 2usgra2adedgwlk 26142 . 2 (𝑉 USGrph 𝐸 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))))
4 simp1 1054 . . . 4 ((𝐹(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → 𝐹(𝑉 Walks 𝐸)𝑃)
5 eqcom 2617 . . . . . . 7 (𝐴 = (𝑃‘0) ↔ (𝑃‘0) = 𝐴)
65biimpi 205 . . . . . 6 (𝐴 = (𝑃‘0) → (𝑃‘0) = 𝐴)
763ad2ant1 1075 . . . . 5 ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘0) = 𝐴)
873ad2ant3 1077 . . . 4 ((𝐹(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝑃‘0) = 𝐴)
9 fveq2 6103 . . . . . 6 ((#‘𝐹) = 2 → (𝑃‘(#‘𝐹)) = (𝑃‘2))
10 eqcom 2617 . . . . . . . 8 (𝐶 = (𝑃‘2) ↔ (𝑃‘2) = 𝐶)
1110biimpi 205 . . . . . . 7 (𝐶 = (𝑃‘2) → (𝑃‘2) = 𝐶)
12113ad2ant3 1077 . . . . . 6 ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘2) = 𝐶)
139, 12sylan9eq 2664 . . . . 5 (((#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝑃‘(#‘𝐹)) = 𝐶)
14133adant1 1072 . . . 4 ((𝐹(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝑃‘(#‘𝐹)) = 𝐶)
154, 8, 143jca 1235 . . 3 ((𝐹(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐶))
16 wlkbprop 26051 . . . . . 6 (𝐹(𝑉 Walks 𝐸)𝑃 → ((#‘𝐹) ∈ ℕ0 ∧ (𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
17 2mwlk 26049 . . . . . 6 (𝐹(𝑉 Walks 𝐸)𝑃 → (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉))
18 simp-4l 802 . . . . . . . . 9 ((((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ (#‘𝐹) = 2) ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝑉 ∈ V ∧ 𝐸 ∈ V))
19 simp-4r 803 . . . . . . . . 9 ((((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ (#‘𝐹) = 2) ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
20 oveq2 6557 . . . . . . . . . . . . . . . 16 ((#‘𝐹) = 2 → (0...(#‘𝐹)) = (0...2))
2120feq2d 5944 . . . . . . . . . . . . . . 15 ((#‘𝐹) = 2 → (𝑃:(0...(#‘𝐹))⟶𝑉𝑃:(0...2)⟶𝑉))
2221anbi2d 736 . . . . . . . . . . . . . 14 ((#‘𝐹) = 2 → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉) ↔ (𝐹 ∈ Word dom 𝐸𝑃:(0...2)⟶𝑉)))
2322anbi2d 736 . . . . . . . . . . . . 13 ((#‘𝐹) = 2 → ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉)) ↔ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...2)⟶𝑉))))
24 c0ex 9913 . . . . . . . . . . . . . . . . . . 19 0 ∈ V
2524tpid1 4246 . . . . . . . . . . . . . . . . . 18 0 ∈ {0, 1, 2}
26 fz0tp 12309 . . . . . . . . . . . . . . . . . 18 (0...2) = {0, 1, 2}
2725, 26eleqtrri 2687 . . . . . . . . . . . . . . . . 17 0 ∈ (0...2)
28 ffvelrn 6265 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...2)⟶𝑉 ∧ 0 ∈ (0...2)) → (𝑃‘0) ∈ 𝑉)
2927, 28mpan2 703 . . . . . . . . . . . . . . . 16 (𝑃:(0...2)⟶𝑉 → (𝑃‘0) ∈ 𝑉)
30 2z 11286 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℤ
3130elexi 3186 . . . . . . . . . . . . . . . . . . 19 2 ∈ V
3231tpid3 4250 . . . . . . . . . . . . . . . . . 18 2 ∈ {0, 1, 2}
3332, 26eleqtrri 2687 . . . . . . . . . . . . . . . . 17 2 ∈ (0...2)
34 ffvelrn 6265 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...2)⟶𝑉 ∧ 2 ∈ (0...2)) → (𝑃‘2) ∈ 𝑉)
3533, 34mpan2 703 . . . . . . . . . . . . . . . 16 (𝑃:(0...2)⟶𝑉 → (𝑃‘2) ∈ 𝑉)
3629, 35jca 553 . . . . . . . . . . . . . . 15 (𝑃:(0...2)⟶𝑉 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
3736adantl 481 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom 𝐸𝑃:(0...2)⟶𝑉) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
3837adantl 481 . . . . . . . . . . . . 13 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...2)⟶𝑉)) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
3923, 38syl6bi 242 . . . . . . . . . . . 12 ((#‘𝐹) = 2 → ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉)) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
4039impcom 445 . . . . . . . . . . 11 (((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ (#‘𝐹) = 2) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
4140adantr 480 . . . . . . . . . 10 ((((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ (#‘𝐹) = 2) ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
42 eleq1 2676 . . . . . . . . . . . . 13 (𝐴 = (𝑃‘0) → (𝐴𝑉 ↔ (𝑃‘0) ∈ 𝑉))
43 eleq1 2676 . . . . . . . . . . . . 13 (𝐶 = (𝑃‘2) → (𝐶𝑉 ↔ (𝑃‘2) ∈ 𝑉))
4442, 43bi2anan9 913 . . . . . . . . . . . 12 ((𝐴 = (𝑃‘0) ∧ 𝐶 = (𝑃‘2)) → ((𝐴𝑉𝐶𝑉) ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
45443adant2 1073 . . . . . . . . . . 11 ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → ((𝐴𝑉𝐶𝑉) ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
4645adantl 481 . . . . . . . . . 10 ((((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ (#‘𝐹) = 2) ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → ((𝐴𝑉𝐶𝑉) ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
4741, 46mpbird 246 . . . . . . . . 9 ((((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ (#‘𝐹) = 2) ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝐴𝑉𝐶𝑉))
4818, 19, 473jca 1235 . . . . . . . 8 ((((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉)) ∧ (#‘𝐹) = 2) ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐶𝑉)))
4948exp41 636 . . . . . . 7 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉) → ((#‘𝐹) = 2 → ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐶𝑉))))))
50493adant1 1072 . . . . . 6 (((#‘𝐹) ∈ ℕ0 ∧ (𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉) → ((#‘𝐹) = 2 → ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐶𝑉))))))
5116, 17, 50sylc 63 . . . . 5 (𝐹(𝑉 Walks 𝐸)𝑃 → ((#‘𝐹) = 2 → ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐶𝑉)))))
52513imp 1249 . . . 4 ((𝐹(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐶𝑉)))
53 iswlkon 26062 . . . 4 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐶𝑉)) → (𝐹(𝐴(𝑉 WalkOn 𝐸)𝐶)𝑃 ↔ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐶)))
5452, 53syl 17 . . 3 ((𝐹(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝐹(𝐴(𝑉 WalkOn 𝐸)𝐶)𝑃 ↔ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐶)))
5515, 54mpbird 246 . 2 ((𝐹(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → 𝐹(𝐴(𝑉 WalkOn 𝐸)𝐶)𝑃)
563, 55syl6 34 1 (𝑉 USGrph 𝐸 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → 𝐹(𝐴(𝑉 WalkOn 𝐸)𝐶)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  {cpr 4127  {ctp 4129  cop 4131   class class class wbr 4583  ccnv 5037  dom cdm 5038  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  2c2 10947  0cn0 11169  cz 11254  ...cfz 12197  #chash 12979  Word cword 13146   USGrph cusg 25859   Walks cwalk 26026   WalkOn cwlkon 26030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-usgra 25862  df-wlk 26036  df-wlkon 26042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator