MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgra2adedgwlk Structured version   Visualization version   GIF version

Theorem usgra2adedgwlk 26142
Description: In an undirected simple graph, two adjacent edges form a walk between two (different) vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.)
Hypotheses
Ref Expression
usgra2adedgspth.f 𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}
usgra2adedgspth.p 𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}
Assertion
Ref Expression
usgra2adedgwlk (𝑉 USGrph 𝐸 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))))

Proof of Theorem usgra2adedgwlk
StepHypRef Expression
1 usgrav 25867 . . . . 5 (𝑉 USGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
21adantr 480 . . . 4 ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → (𝑉 ∈ V ∧ 𝐸 ∈ V))
3 usgraedgrnv 25906 . . . . . . . 8 ((𝑉 USGrph 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸) → (𝐴𝑉𝐵𝑉))
43ancomd 466 . . . . . . 7 ((𝑉 USGrph 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸) → (𝐵𝑉𝐴𝑉))
54adantrr 749 . . . . . 6 ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → (𝐵𝑉𝐴𝑉))
65simprd 478 . . . . 5 ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → 𝐴𝑉)
73adantrr 749 . . . . . 6 ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → (𝐴𝑉𝐵𝑉))
87simprd 478 . . . . 5 ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → 𝐵𝑉)
9 usgraedgrnv 25906 . . . . . . 7 ((𝑉 USGrph 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → (𝐵𝑉𝐶𝑉))
109adantrl 748 . . . . . 6 ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → (𝐵𝑉𝐶𝑉))
1110simprd 478 . . . . 5 ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → 𝐶𝑉)
126, 8, 113jca 1235 . . . 4 ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → (𝐴𝑉𝐵𝑉𝐶𝑉))
132, 12jca 553 . . 3 ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))
14 simpl 472 . . . . 5 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))
15 usgra2adedgspthlem1 26139 . . . . . 6 ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → ((𝐸‘(𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶}))
1615adantl 481 . . . . 5 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))) → ((𝐸‘(𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶}))
17 fvex 6113 . . . . . . 7 (𝐸‘{𝐴, 𝐵}) ∈ V
18 fvex 6113 . . . . . . 7 (𝐸‘{𝐵, 𝐶}) ∈ V
1917, 18pm3.2i 470 . . . . . 6 ((𝐸‘{𝐴, 𝐵}) ∈ V ∧ (𝐸‘{𝐵, 𝐶}) ∈ V)
20 usgra2adedgspth.f . . . . . 6 𝐹 = {⟨0, (𝐸‘{𝐴, 𝐵})⟩, ⟨1, (𝐸‘{𝐵, 𝐶})⟩}
21 usgra2adedgspth.p . . . . . 6 𝑃 = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}
2219, 20, 21constr2wlk 26128 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐸‘(𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶}) → 𝐹(𝑉 Walks 𝐸)𝑃))
2314, 16, 22sylc 63 . . . 4 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))) → 𝐹(𝑉 Walks 𝐸)𝑃)
2419, 202trllemA 26080 . . . . 5 (#‘𝐹) = 2
2524a1i 11 . . . 4 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))) → (#‘𝐹) = 2)
26212wlklemA 26084 . . . . . . . 8 (𝐴𝑉 → (𝑃‘0) = 𝐴)
2726eqcomd 2616 . . . . . . 7 (𝐴𝑉𝐴 = (𝑃‘0))
28212wlklemB 26085 . . . . . . . 8 (𝐵𝑉 → (𝑃‘1) = 𝐵)
2928eqcomd 2616 . . . . . . 7 (𝐵𝑉𝐵 = (𝑃‘1))
30212wlklemC 26086 . . . . . . . 8 (𝐶𝑉 → (𝑃‘2) = 𝐶)
3130eqcomd 2616 . . . . . . 7 (𝐶𝑉𝐶 = (𝑃‘2))
3227, 29, 313anim123i 1240 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))
3332adantl 481 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))
3433adantr 480 . . . 4 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))) → (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))
3523, 25, 343jca 1235 . . 3 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))) → (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))))
3613, 35mpancom 700 . 2 ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))))
3736ex 449 1 (𝑉 USGrph 𝐸 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  {cpr 4127  {ctp 4129  cop 4131   class class class wbr 4583  ccnv 5037  ran crn 5039  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  2c2 10947  #chash 12979   USGrph cusg 25859   Walks cwalk 26026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-usgra 25862  df-wlk 26036
This theorem is referenced by:  usgra2adedgwlkonALT  26144  usg2wlk  26145
  Copyright terms: Public domain W3C validator