Proof of Theorem usgra2adedgspthlem2
Step | Hyp | Ref
| Expression |
1 | | usgraf1o 25887 |
. . . 4
⊢ (𝑉 USGrph 𝐸 → 𝐸:dom 𝐸–1-1-onto→ran
𝐸) |
2 | | f1of1 6049 |
. . . . 5
⊢ (𝐸:dom 𝐸–1-1-onto→ran
𝐸 → 𝐸:dom 𝐸–1-1→ran 𝐸) |
3 | | f1ocnvfvrneq 6441 |
. . . . . . . . . 10
⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → ((◡𝐸‘{𝐴, 𝐵}) = (◡𝐸‘{𝐵, 𝐶}) → {𝐴, 𝐵} = {𝐵, 𝐶})) |
4 | 3 | adantlr 747 |
. . . . . . . . 9
⊢ (((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝑉 USGrph 𝐸) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → ((◡𝐸‘{𝐴, 𝐵}) = (◡𝐸‘{𝐵, 𝐶}) → {𝐴, 𝐵} = {𝐵, 𝐶})) |
5 | | usgraedgrnv 25906 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑉 USGrph 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
6 | | usgraedgrnv 25906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑉 USGrph 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) |
7 | | pm3.2 462 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)))) |
8 | 6, 7 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑉 USGrph 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸) → ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)))) |
9 | 8 | ex 449 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑉 USGrph 𝐸 → ({𝐴, 𝐵} ∈ ran 𝐸 → ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))))) |
10 | 9 | com13 86 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ({𝐴, 𝐵} ∈ ran 𝐸 → (𝑉 USGrph 𝐸 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))))) |
11 | 5, 10 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑉 USGrph 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → ({𝐴, 𝐵} ∈ ran 𝐸 → (𝑉 USGrph 𝐸 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))))) |
12 | 11 | ex 449 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑉 USGrph 𝐸 → ({𝐵, 𝐶} ∈ ran 𝐸 → ({𝐴, 𝐵} ∈ ran 𝐸 → (𝑉 USGrph 𝐸 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)))))) |
13 | 12 | com13 86 |
. . . . . . . . . . . . . . . 16
⊢ ({𝐴, 𝐵} ∈ ran 𝐸 → ({𝐵, 𝐶} ∈ ran 𝐸 → (𝑉 USGrph 𝐸 → (𝑉 USGrph 𝐸 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)))))) |
14 | 13 | imp 444 |
. . . . . . . . . . . . . . 15
⊢ (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → (𝑉 USGrph 𝐸 → (𝑉 USGrph 𝐸 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))))) |
15 | 14 | com13 86 |
. . . . . . . . . . . . . 14
⊢ (𝑉 USGrph 𝐸 → (𝑉 USGrph 𝐸 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))))) |
16 | 15 | pm2.43i 50 |
. . . . . . . . . . . . 13
⊢ (𝑉 USGrph 𝐸 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)))) |
17 | 16 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝑉 USGrph 𝐸) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)))) |
18 | 17 | imp 444 |
. . . . . . . . . . 11
⊢ (((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝑉 USGrph 𝐸) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) |
19 | | preq12bg 4326 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐵)))) |
20 | 18, 19 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝑉 USGrph 𝐸) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐵)))) |
21 | | eqtr 2629 |
. . . . . . . . . . 11
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
22 | | simpl 472 |
. . . . . . . . . . 11
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐵) → 𝐴 = 𝐶) |
23 | 21, 22 | jaoi 393 |
. . . . . . . . . 10
⊢ (((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐵)) → 𝐴 = 𝐶) |
24 | 20, 23 | syl6bi 242 |
. . . . . . . . 9
⊢ (((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝑉 USGrph 𝐸) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝐴 = 𝐶)) |
25 | 4, 24 | syld 46 |
. . . . . . . 8
⊢ (((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝑉 USGrph 𝐸) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → ((◡𝐸‘{𝐴, 𝐵}) = (◡𝐸‘{𝐵, 𝐶}) → 𝐴 = 𝐶)) |
26 | 25 | necon3d 2803 |
. . . . . . 7
⊢ (((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝑉 USGrph 𝐸) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → (𝐴 ≠ 𝐶 → (◡𝐸‘{𝐴, 𝐵}) ≠ (◡𝐸‘{𝐵, 𝐶}))) |
27 | 26 | exp31 628 |
. . . . . 6
⊢ (𝐸:dom 𝐸–1-1→ran 𝐸 → (𝑉 USGrph 𝐸 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → (𝐴 ≠ 𝐶 → (◡𝐸‘{𝐴, 𝐵}) ≠ (◡𝐸‘{𝐵, 𝐶}))))) |
28 | 27 | com34 89 |
. . . . 5
⊢ (𝐸:dom 𝐸–1-1→ran 𝐸 → (𝑉 USGrph 𝐸 → (𝐴 ≠ 𝐶 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → (◡𝐸‘{𝐴, 𝐵}) ≠ (◡𝐸‘{𝐵, 𝐶}))))) |
29 | 2, 28 | syl 17 |
. . . 4
⊢ (𝐸:dom 𝐸–1-1-onto→ran
𝐸 → (𝑉 USGrph 𝐸 → (𝐴 ≠ 𝐶 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → (◡𝐸‘{𝐴, 𝐵}) ≠ (◡𝐸‘{𝐵, 𝐶}))))) |
30 | 1, 29 | mpcom 37 |
. . 3
⊢ (𝑉 USGrph 𝐸 → (𝐴 ≠ 𝐶 → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → (◡𝐸‘{𝐴, 𝐵}) ≠ (◡𝐸‘{𝐵, 𝐶})))) |
31 | 30 | imp31 447 |
. 2
⊢ (((𝑉 USGrph 𝐸 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → (◡𝐸‘{𝐴, 𝐵}) ≠ (◡𝐸‘{𝐵, 𝐶})) |
32 | | usgra2adedgspthlem1 26139 |
. . 3
⊢ ((𝑉 USGrph 𝐸 ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → ((𝐸‘(◡𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(◡𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶})) |
33 | 32 | adantlr 747 |
. 2
⊢ (((𝑉 USGrph 𝐸 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → ((𝐸‘(◡𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(◡𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶})) |
34 | | 3anass 1035 |
. 2
⊢ (((◡𝐸‘{𝐴, 𝐵}) ≠ (◡𝐸‘{𝐵, 𝐶}) ∧ (𝐸‘(◡𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(◡𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶}) ↔ ((◡𝐸‘{𝐴, 𝐵}) ≠ (◡𝐸‘{𝐵, 𝐶}) ∧ ((𝐸‘(◡𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(◡𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶}))) |
35 | 31, 33, 34 | sylanbrc 695 |
1
⊢ (((𝑉 USGrph 𝐸 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸)) → ((◡𝐸‘{𝐴, 𝐵}) ≠ (◡𝐸‘{𝐵, 𝐶}) ∧ (𝐸‘(◡𝐸‘{𝐴, 𝐵})) = {𝐴, 𝐵} ∧ (𝐸‘(◡𝐸‘{𝐵, 𝐶})) = {𝐵, 𝐶})) |