Step | Hyp | Ref
| Expression |
1 | | usgrav 25867 |
. . . . 5
⊢ ({𝐴} USGrph 𝐸 → ({𝐴} ∈ V ∧ 𝐸 ∈ V)) |
2 | | isusgra 25873 |
. . . . . . . . 9
⊢ (({𝐴} ∈ V ∧ 𝐸 ∈ V) → ({𝐴} USGrph 𝐸 ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 {𝐴} ∖ {∅}) ∣ (#‘𝑥) = 2})) |
3 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((({𝐴} ∈ V ∧ 𝐸 ∈ V) ∧ 𝐴 ∈ V) → ({𝐴} USGrph 𝐸 ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 {𝐴} ∖ {∅}) ∣ (#‘𝑥) = 2})) |
4 | | eqidd 2611 |
. . . . . . . . . 10
⊢ ((({𝐴} ∈ V ∧ 𝐸 ∈ V) ∧ 𝐴 ∈ V) → 𝐸 = 𝐸) |
5 | | eqidd 2611 |
. . . . . . . . . 10
⊢ ((({𝐴} ∈ V ∧ 𝐸 ∈ V) ∧ 𝐴 ∈ V) → dom 𝐸 = dom 𝐸) |
6 | | pwsn 4366 |
. . . . . . . . . . . . . 14
⊢ 𝒫
{𝐴} = {∅, {𝐴}} |
7 | 6 | difeq1i 3686 |
. . . . . . . . . . . . 13
⊢
(𝒫 {𝐴}
∖ {∅}) = ({∅, {𝐴}} ∖ {∅}) |
8 | | snnzg 4251 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) |
9 | 8 | necomd 2837 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ V → ∅ ≠
{𝐴}) |
10 | 9 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((({𝐴} ∈ V ∧ 𝐸 ∈ V) ∧ 𝐴 ∈ V) → ∅ ≠
{𝐴}) |
11 | | difprsn1 4271 |
. . . . . . . . . . . . . 14
⊢ (∅
≠ {𝐴} → ({∅,
{𝐴}} ∖ {∅}) =
{{𝐴}}) |
12 | 10, 11 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((({𝐴} ∈ V ∧ 𝐸 ∈ V) ∧ 𝐴 ∈ V) → ({∅,
{𝐴}} ∖ {∅}) =
{{𝐴}}) |
13 | 7, 12 | syl5eq 2656 |
. . . . . . . . . . . 12
⊢ ((({𝐴} ∈ V ∧ 𝐸 ∈ V) ∧ 𝐴 ∈ V) → (𝒫
{𝐴} ∖ {∅}) =
{{𝐴}}) |
14 | 13 | rabeqdv 3167 |
. . . . . . . . . . 11
⊢ ((({𝐴} ∈ V ∧ 𝐸 ∈ V) ∧ 𝐴 ∈ V) → {𝑥 ∈ (𝒫 {𝐴} ∖ {∅}) ∣
(#‘𝑥) = 2} = {𝑥 ∈ {{𝐴}} ∣ (#‘𝑥) = 2}) |
15 | | hashsng 13020 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ V → (#‘{𝐴}) = 1) |
16 | | 1ne2 11117 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ≠
2 |
17 | | neeq1 2844 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘{𝐴}) = 1
→ ((#‘{𝐴}) ≠
2 ↔ 1 ≠ 2)) |
18 | 16, 17 | mpbiri 247 |
. . . . . . . . . . . . . . . 16
⊢
((#‘{𝐴}) = 1
→ (#‘{𝐴}) ≠
2) |
19 | 18 | neneqd 2787 |
. . . . . . . . . . . . . . 15
⊢
((#‘{𝐴}) = 1
→ ¬ (#‘{𝐴})
= 2) |
20 | 15, 19 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ V → ¬
(#‘{𝐴}) =
2) |
21 | | 0ne2 11116 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≠
2 |
22 | 21 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝐴 ∈ V → 0 ≠
2) |
23 | 22 | neneqd 2787 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝐴 ∈ V → ¬ 0 =
2) |
24 | | snprc 4197 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝐴 ∈ V ↔ {𝐴} = ∅) |
25 | 24 | biimpi 205 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝐴 ∈ V → {𝐴} = ∅) |
26 | 25 | fveq2d 6107 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝐴 ∈ V →
(#‘{𝐴}) =
(#‘∅)) |
27 | | hash0 13019 |
. . . . . . . . . . . . . . . . 17
⊢
(#‘∅) = 0 |
28 | 26, 27 | syl6eq 2660 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝐴 ∈ V →
(#‘{𝐴}) =
0) |
29 | 28 | eqeq1d 2612 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝐴 ∈ V →
((#‘{𝐴}) = 2 ↔ 0
= 2)) |
30 | 23, 29 | mtbird 314 |
. . . . . . . . . . . . . 14
⊢ (¬
𝐴 ∈ V → ¬
(#‘{𝐴}) =
2) |
31 | 20, 30 | pm2.61i 175 |
. . . . . . . . . . . . 13
⊢ ¬
(#‘{𝐴}) =
2 |
32 | | snex 4835 |
. . . . . . . . . . . . . 14
⊢ {𝐴} ∈ V |
33 | | fveq2 6103 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = {𝐴} → (#‘𝑥) = (#‘{𝐴})) |
34 | 33 | eqeq1d 2612 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = {𝐴} → ((#‘𝑥) = 2 ↔ (#‘{𝐴}) = 2)) |
35 | 34 | notbid 307 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = {𝐴} → (¬ (#‘𝑥) = 2 ↔ ¬ (#‘{𝐴}) = 2)) |
36 | 32, 35 | ralsn 4169 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
{{𝐴}} ¬ (#‘𝑥) = 2 ↔ ¬
(#‘{𝐴}) =
2) |
37 | 31, 36 | mpbir 220 |
. . . . . . . . . . . 12
⊢
∀𝑥 ∈
{{𝐴}} ¬ (#‘𝑥) = 2 |
38 | | rabeq0 3911 |
. . . . . . . . . . . 12
⊢ ({𝑥 ∈ {{𝐴}} ∣ (#‘𝑥) = 2} = ∅ ↔ ∀𝑥 ∈ {{𝐴}} ¬ (#‘𝑥) = 2) |
39 | 37, 38 | mpbir 220 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ {{𝐴}} ∣ (#‘𝑥) = 2} = ∅ |
40 | 14, 39 | syl6eq 2660 |
. . . . . . . . . 10
⊢ ((({𝐴} ∈ V ∧ 𝐸 ∈ V) ∧ 𝐴 ∈ V) → {𝑥 ∈ (𝒫 {𝐴} ∖ {∅}) ∣
(#‘𝑥) = 2} =
∅) |
41 | 4, 5, 40 | f1eq123d 6044 |
. . . . . . . . 9
⊢ ((({𝐴} ∈ V ∧ 𝐸 ∈ V) ∧ 𝐴 ∈ V) → (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 {𝐴} ∖ {∅}) ∣ (#‘𝑥) = 2} ↔ 𝐸:dom 𝐸–1-1→∅)) |
42 | | f1f 6014 |
. . . . . . . . . 10
⊢ (𝐸:dom 𝐸–1-1→∅ → 𝐸:dom 𝐸⟶∅) |
43 | | f00 6000 |
. . . . . . . . . . 11
⊢ (𝐸:dom 𝐸⟶∅ ↔ (𝐸 = ∅ ∧ dom 𝐸 = ∅)) |
44 | 43 | simplbi 475 |
. . . . . . . . . 10
⊢ (𝐸:dom 𝐸⟶∅ → 𝐸 = ∅) |
45 | 42, 44 | syl 17 |
. . . . . . . . 9
⊢ (𝐸:dom 𝐸–1-1→∅ → 𝐸 = ∅) |
46 | 41, 45 | syl6bi 242 |
. . . . . . . 8
⊢ ((({𝐴} ∈ V ∧ 𝐸 ∈ V) ∧ 𝐴 ∈ V) → (𝐸:dom 𝐸–1-1→{𝑥 ∈ (𝒫 {𝐴} ∖ {∅}) ∣ (#‘𝑥) = 2} → 𝐸 = ∅)) |
47 | 3, 46 | sylbid 229 |
. . . . . . 7
⊢ ((({𝐴} ∈ V ∧ 𝐸 ∈ V) ∧ 𝐴 ∈ V) → ({𝐴} USGrph 𝐸 → 𝐸 = ∅)) |
48 | 47 | ex 449 |
. . . . . 6
⊢ (({𝐴} ∈ V ∧ 𝐸 ∈ V) → (𝐴 ∈ V → ({𝐴} USGrph 𝐸 → 𝐸 = ∅))) |
49 | 48 | com23 84 |
. . . . 5
⊢ (({𝐴} ∈ V ∧ 𝐸 ∈ V) → ({𝐴} USGrph 𝐸 → (𝐴 ∈ V → 𝐸 = ∅))) |
50 | 1, 49 | mpcom 37 |
. . . 4
⊢ ({𝐴} USGrph 𝐸 → (𝐴 ∈ V → 𝐸 = ∅)) |
51 | 50 | com12 32 |
. . 3
⊢ (𝐴 ∈ V → ({𝐴} USGrph 𝐸 → 𝐸 = ∅)) |
52 | | usgra0 25899 |
. . . . 5
⊢ ({𝐴} ∈ V → {𝐴} USGrph
∅) |
53 | 32, 52 | ax-mp 5 |
. . . 4
⊢ {𝐴} USGrph
∅ |
54 | | breq2 4587 |
. . . 4
⊢ (𝐸 = ∅ → ({𝐴} USGrph 𝐸 ↔ {𝐴} USGrph ∅)) |
55 | 53, 54 | mpbiri 247 |
. . 3
⊢ (𝐸 = ∅ → {𝐴} USGrph 𝐸) |
56 | 51, 55 | impbid1 214 |
. 2
⊢ (𝐴 ∈ V → ({𝐴} USGrph 𝐸 ↔ 𝐸 = ∅)) |
57 | | breq1 4586 |
. . . 4
⊢ ({𝐴} = ∅ → ({𝐴} USGrph 𝐸 ↔ ∅ USGrph 𝐸)) |
58 | | usgra0v 25900 |
. . . 4
⊢ (∅
USGrph 𝐸 ↔ 𝐸 = ∅) |
59 | 57, 58 | syl6bb 275 |
. . 3
⊢ ({𝐴} = ∅ → ({𝐴} USGrph 𝐸 ↔ 𝐸 = ∅)) |
60 | 24, 59 | sylbi 206 |
. 2
⊢ (¬
𝐴 ∈ V → ({𝐴} USGrph 𝐸 ↔ 𝐸 = ∅)) |
61 | 56, 60 | pm2.61i 175 |
1
⊢ ({𝐴} USGrph 𝐸 ↔ 𝐸 = ∅) |