Step | Hyp | Ref
| Expression |
1 | | trlis1wlk 40905 |
. . . 4
⊢ (𝐹(TrailS‘𝐺)𝑃 → 𝐹(1Walks‘𝐺)𝑃) |
2 | | wlkv 40815 |
. . . 4
⊢ (𝐹(1Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝐹(TrailS‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
4 | | usgrupgr 40412 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph
) |
5 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
𝐺 ∈ UPGraph
) |
6 | 5 | adantl 481 |
. . . . . . 7
⊢ (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐺 ∈ USGraph ∧
(#‘𝐹) = 2)) →
𝐺 ∈ UPGraph
) |
7 | | simpl2 1058 |
. . . . . . 7
⊢ (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐺 ∈ USGraph ∧
(#‘𝐹) = 2)) →
𝐹 ∈
V) |
8 | | simpl3 1059 |
. . . . . . 7
⊢ (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐺 ∈ USGraph ∧
(#‘𝐹) = 2)) →
𝑃 ∈
V) |
9 | | eqid 2610 |
. . . . . . . 8
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
10 | | eqid 2610 |
. . . . . . . 8
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
11 | 9, 10 | upgrf1istrl 40911 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(TrailS‘𝐺)𝑃 ↔ (𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
12 | 6, 7, 8, 11 | syl3anc 1318 |
. . . . . 6
⊢ (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐺 ∈ USGraph ∧
(#‘𝐹) = 2)) →
(𝐹(TrailS‘𝐺)𝑃 ↔ (𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
13 | | eqidd 2611 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐹) = 2
→ 𝐹 = 𝐹) |
14 | | oveq2 6557 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝐹) = 2
→ (0..^(#‘𝐹)) =
(0..^2)) |
15 | | fzo0to2pr 12420 |
. . . . . . . . . . . . . . 15
⊢ (0..^2) =
{0, 1} |
16 | 14, 15 | syl6eq 2660 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐹) = 2
→ (0..^(#‘𝐹)) =
{0, 1}) |
17 | | eqidd 2611 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐹) = 2
→ dom (iEdg‘𝐺) =
dom (iEdg‘𝐺)) |
18 | 13, 16, 17 | f1eq123d 6044 |
. . . . . . . . . . . . 13
⊢
((#‘𝐹) = 2
→ (𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ↔ 𝐹:{0, 1}–1-1→dom (iEdg‘𝐺))) |
19 | 16 | raleqdv 3121 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐹) = 2
→ (∀𝑖 ∈
(0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
20 | | c0ex 9913 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
V |
21 | | 1ex 9914 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
V |
22 | | fveq2 6103 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 0 → (𝐹‘𝑖) = (𝐹‘0)) |
23 | 22 | fveq2d 6107 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 0 → ((iEdg‘𝐺)‘(𝐹‘𝑖)) = ((iEdg‘𝐺)‘(𝐹‘0))) |
24 | | fveq2 6103 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 0 → (𝑃‘𝑖) = (𝑃‘0)) |
25 | | oveq1 6556 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 0 → (𝑖 + 1) = (0 + 1)) |
26 | | 0p1e1 11009 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 + 1) =
1 |
27 | 25, 26 | syl6eq 2660 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 0 → (𝑖 + 1) = 1) |
28 | 27 | fveq2d 6107 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 0 → (𝑃‘(𝑖 + 1)) = (𝑃‘1)) |
29 | 24, 28 | preq12d 4220 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 0 → {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘0), (𝑃‘1)}) |
30 | 23, 29 | eqeq12d 2625 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 0 → (((iEdg‘𝐺)‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
31 | | fveq2 6103 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 1 → (𝐹‘𝑖) = (𝐹‘1)) |
32 | 31 | fveq2d 6107 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 1 → ((iEdg‘𝐺)‘(𝐹‘𝑖)) = ((iEdg‘𝐺)‘(𝐹‘1))) |
33 | | fveq2 6103 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 1 → (𝑃‘𝑖) = (𝑃‘1)) |
34 | | oveq1 6556 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 1 → (𝑖 + 1) = (1 + 1)) |
35 | | 1p1e2 11011 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1 + 1) =
2 |
36 | 34, 35 | syl6eq 2660 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 1 → (𝑖 + 1) = 2) |
37 | 36 | fveq2d 6107 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 1 → (𝑃‘(𝑖 + 1)) = (𝑃‘2)) |
38 | 33, 37 | preq12d 4220 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 1 → {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘1), (𝑃‘2)}) |
39 | 32, 38 | eqeq12d 2625 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 1 → (((iEdg‘𝐺)‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
40 | 20, 21, 30, 39 | ralpr 4185 |
. . . . . . . . . . . . . 14
⊢
(∀𝑖 ∈
{0, 1} ((iEdg‘𝐺)‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
41 | 19, 40 | syl6bb 275 |
. . . . . . . . . . . . 13
⊢
((#‘𝐹) = 2
→ (∀𝑖 ∈
(0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))) |
42 | 18, 41 | anbi12d 743 |
. . . . . . . . . . . 12
⊢
((#‘𝐹) = 2
→ ((𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))) |
43 | 42 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
((𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ↔ (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})))) |
44 | 20, 21 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
V ∧ 1 ∈ V) |
45 | | 0ne1 10965 |
. . . . . . . . . . . . . . 15
⊢ 0 ≠
1 |
46 | | eqid 2610 |
. . . . . . . . . . . . . . . 16
⊢ {0, 1} =
{0, 1} |
47 | 46 | f12dfv 6429 |
. . . . . . . . . . . . . . 15
⊢ (((0
∈ V ∧ 1 ∈ V) ∧ 0 ≠ 1) → (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ↔ (𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)))) |
48 | 44, 45, 47 | mp2an 704 |
. . . . . . . . . . . . . 14
⊢ (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ↔ (𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1))) |
49 | | eqid 2610 |
. . . . . . . . . . . . . . . 16
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
50 | 10, 49 | usgrf1oedg 40434 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ USGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→(Edg‘𝐺)) |
51 | | f1of1 6049 |
. . . . . . . . . . . . . . . 16
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺)) |
52 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹:{0, 1}⟶dom
(iEdg‘𝐺) → 𝐹:{0, 1}⟶dom
(iEdg‘𝐺)) |
53 | 20 | prid1 4241 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 0 ∈
{0, 1} |
54 | 53 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹:{0, 1}⟶dom
(iEdg‘𝐺) → 0
∈ {0, 1}) |
55 | 52, 54 | ffvelrnd 6268 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐹:{0, 1}⟶dom
(iEdg‘𝐺) →
(𝐹‘0) ∈ dom
(iEdg‘𝐺)) |
56 | 21 | prid2 4242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 1 ∈
{0, 1} |
57 | 56 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹:{0, 1}⟶dom
(iEdg‘𝐺) → 1
∈ {0, 1}) |
58 | 52, 57 | ffvelrnd 6268 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐹:{0, 1}⟶dom
(iEdg‘𝐺) →
(𝐹‘1) ∈ dom
(iEdg‘𝐺)) |
59 | 55, 58 | jca 553 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:{0, 1}⟶dom
(iEdg‘𝐺) →
((𝐹‘0) ∈ dom
(iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom
(iEdg‘𝐺))) |
60 | 59 | anim2i 591 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→(Edg‘𝐺) ∧ 𝐹:{0, 1}⟶dom (iEdg‘𝐺)) → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) ∧ ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺)))) |
61 | 60 | ancoms 468 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹:{0, 1}⟶dom
(iEdg‘𝐺) ∧
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→(Edg‘𝐺)) → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→(Edg‘𝐺) ∧ ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺)))) |
62 | | f1veqaeq 6418 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→(Edg‘𝐺) ∧ ((𝐹‘0) ∈ dom (iEdg‘𝐺) ∧ (𝐹‘1) ∈ dom (iEdg‘𝐺))) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝐹‘0) = (𝐹‘1))) |
63 | 61, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:{0, 1}⟶dom
(iEdg‘𝐺) ∧
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→(Edg‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = ((iEdg‘𝐺)‘(𝐹‘1)) → (𝐹‘0) = (𝐹‘1))) |
64 | 63 | necon3d 2803 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹:{0, 1}⟶dom
(iEdg‘𝐺) ∧
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→(Edg‘𝐺)) → ((𝐹‘0) ≠ (𝐹‘1) → ((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)))) |
65 | | simpl 472 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}) |
66 | | simpr 476 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) |
67 | 65, 66 | neeq12d 2843 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) ↔ {(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)})) |
68 | | preq1 4212 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑃‘0) = (𝑃‘2) → {(𝑃‘0), (𝑃‘1)} = {(𝑃‘2), (𝑃‘1)}) |
69 | | prcom 4211 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {(𝑃‘2), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)} |
70 | 68, 69 | syl6eq 2660 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑃‘0) = (𝑃‘2) → {(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)}) |
71 | 70 | necon3i 2814 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({(𝑃‘0), (𝑃‘1)} ≠ {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) ≠ (𝑃‘2)) |
72 | 67, 71 | syl6bi 242 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) → (𝑃‘0) ≠ (𝑃‘2))) |
73 | 72 | com12 32 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))) |
74 | 73 | a1d 25 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((iEdg‘𝐺)‘(𝐹‘0)) ≠ ((iEdg‘𝐺)‘(𝐹‘1)) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))) |
75 | 64, 74 | syl6 34 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:{0, 1}⟶dom
(iEdg‘𝐺) ∧
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→(Edg‘𝐺)) → ((𝐹‘0) ≠ (𝐹‘1) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))) |
76 | 75 | expcom 450 |
. . . . . . . . . . . . . . . . . 18
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→(Edg‘𝐺) → (𝐹:{0, 1}⟶dom (iEdg‘𝐺) → ((𝐹‘0) ≠ (𝐹‘1) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))))) |
77 | 76 | impd 446 |
. . . . . . . . . . . . . . . . 17
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→(Edg‘𝐺) → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → (𝐺 ∈ USGraph → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))) |
78 | 77 | com23 84 |
. . . . . . . . . . . . . . . 16
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→(Edg‘𝐺) → (𝐺 ∈ USGraph → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))) |
79 | 51, 78 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) → (𝐺 ∈ USGraph → ((𝐹:{0, 1}⟶dom (iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2))))) |
80 | 50, 79 | mpcom 37 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ USGraph → ((𝐹:{0, 1}⟶dom
(iEdg‘𝐺) ∧ (𝐹‘0) ≠ (𝐹‘1)) →
((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))) |
81 | 48, 80 | syl5bi 231 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USGraph → (𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) ≠ (𝑃‘2)))) |
82 | 81 | impd 446 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USGraph → ((𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))) |
83 | 82 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
((𝐹:{0, 1}–1-1→dom (iEdg‘𝐺) ∧ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) → (𝑃‘0) ≠ (𝑃‘2))) |
84 | 43, 83 | sylbid 229 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
((𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → (𝑃‘0) ≠ (𝑃‘2))) |
85 | 84 | com12 32 |
. . . . . . . . 9
⊢ ((𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝑃‘0) ≠ (𝑃‘2))) |
86 | 85 | 3adant2 1073 |
. . . . . . . 8
⊢ ((𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝑃‘0) ≠ (𝑃‘2))) |
87 | 86 | com12 32 |
. . . . . . 7
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
((𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → (𝑃‘0) ≠ (𝑃‘2))) |
88 | 87 | adantl 481 |
. . . . . 6
⊢ (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐺 ∈ USGraph ∧
(#‘𝐹) = 2)) →
((𝐹:(0..^(#‘𝐹))–1-1→dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → (𝑃‘0) ≠ (𝑃‘2))) |
89 | 12, 88 | sylbid 229 |
. . . . 5
⊢ (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐺 ∈ USGraph ∧
(#‘𝐹) = 2)) →
(𝐹(TrailS‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2))) |
90 | 89 | ex 449 |
. . . 4
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
(𝐹(TrailS‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2)))) |
91 | 90 | com23 84 |
. . 3
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(TrailS‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝑃‘0) ≠ (𝑃‘2)))) |
92 | 3, 91 | mpcom 37 |
. 2
⊢ (𝐹(TrailS‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (#‘𝐹) = 2) → (𝑃‘0) ≠ (𝑃‘2))) |
93 | 92 | com12 32 |
1
⊢ ((𝐺 ∈ USGraph ∧
(#‘𝐹) = 2) →
(𝐹(TrailS‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2))) |