Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usg2spthonot1 | Structured version Visualization version GIF version |
Description: A simple path of length 2 between two vertices as ordered triple corresponds to two adjacent edges in an undirected simple graph. (Contributed by Alexander van der Vekens, 9-Mar-2018.) |
Ref | Expression |
---|---|
usg2spthonot1 | ⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑇 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) ↔ ∃𝑏 ∈ 𝑉 ((𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrav 25867 | . . 3 ⊢ (𝑉 USGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) | |
2 | el2spthonot0 26398 | . . 3 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑇 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ 〈𝐴, 𝑏, 𝐶〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶)))) | |
3 | 1, 2 | sylan 487 | . 2 ⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑇 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ 〈𝐴, 𝑏, 𝐶〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶)))) |
4 | simpll 786 | . . . . . . 7 ⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝑉 USGrph 𝐸) | |
5 | simplrl 796 | . . . . . . 7 ⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
6 | simpr 476 | . . . . . . 7 ⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝑏 ∈ 𝑉) | |
7 | simplrr 797 | . . . . . . 7 ⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → 𝐶 ∈ 𝑉) | |
8 | usg2spthonot0 26416 | . . . . . . 7 ⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈𝐴, 𝑏, 𝐶〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) ↔ ((𝐴 = 𝐴 ∧ 𝐶 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸)))) | |
9 | 4, 5, 6, 7, 8 | syl13anc 1320 | . . . . . 6 ⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (〈𝐴, 𝑏, 𝐶〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) ↔ ((𝐴 = 𝐴 ∧ 𝐶 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸)))) |
10 | simp3 1056 | . . . . . . . 8 ⊢ ((𝐴 = 𝐴 ∧ 𝐶 = 𝐶 ∧ 𝐴 ≠ 𝐶) → 𝐴 ≠ 𝐶) | |
11 | 10 | anim1i 590 | . . . . . . 7 ⊢ (((𝐴 = 𝐴 ∧ 𝐶 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸)) → (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸))) |
12 | eqidd 2611 | . . . . . . . . 9 ⊢ (𝐴 ≠ 𝐶 → 𝐴 = 𝐴) | |
13 | eqidd 2611 | . . . . . . . . 9 ⊢ (𝐴 ≠ 𝐶 → 𝐶 = 𝐶) | |
14 | id 22 | . . . . . . . . 9 ⊢ (𝐴 ≠ 𝐶 → 𝐴 ≠ 𝐶) | |
15 | 12, 13, 14 | 3jca 1235 | . . . . . . . 8 ⊢ (𝐴 ≠ 𝐶 → (𝐴 = 𝐴 ∧ 𝐶 = 𝐶 ∧ 𝐴 ≠ 𝐶)) |
16 | 15 | anim1i 590 | . . . . . . 7 ⊢ ((𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸)) → ((𝐴 = 𝐴 ∧ 𝐶 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸))) |
17 | 11, 16 | impbii 198 | . . . . . 6 ⊢ (((𝐴 = 𝐴 ∧ 𝐶 = 𝐶 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸)) ↔ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸))) |
18 | 9, 17 | syl6bb 275 | . . . . 5 ⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → (〈𝐴, 𝑏, 𝐶〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) ↔ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸)))) |
19 | 18 | anbi2d 736 | . . . 4 ⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → ((𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ 〈𝐴, 𝑏, 𝐶〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶)) ↔ (𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸))))) |
20 | anass 679 | . . . 4 ⊢ (((𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸)) ↔ (𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ (𝐴 ≠ 𝐶 ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸)))) | |
21 | 19, 20 | syl6bbr 277 | . . 3 ⊢ (((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ 𝑏 ∈ 𝑉) → ((𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ 〈𝐴, 𝑏, 𝐶〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶)) ↔ ((𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸)))) |
22 | 21 | rexbidva 3031 | . 2 ⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (∃𝑏 ∈ 𝑉 (𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ 〈𝐴, 𝑏, 𝐶〉 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶)) ↔ ∃𝑏 ∈ 𝑉 ((𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸)))) |
23 | 3, 22 | bitrd 267 | 1 ⊢ ((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑇 ∈ (𝐴(𝑉 2SPathOnOt 𝐸)𝐶) ↔ ∃𝑏 ∈ 𝑉 ((𝑇 = 〈𝐴, 𝑏, 𝐶〉 ∧ 𝐴 ≠ 𝐶) ∧ ({𝐴, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝐶} ∈ ran 𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∃wrex 2897 Vcvv 3173 {cpr 4127 〈cotp 4133 class class class wbr 4583 ran crn 5039 (class class class)co 6549 USGrph cusg 25859 2SPathOnOt c2pthonot 26384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-ot 4134 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-usgra 25862 df-wlk 26036 df-trail 26037 df-pth 26038 df-spth 26039 df-wlkon 26042 df-spthon 26045 df-2wlkonot 26385 df-2spthonot 26387 |
This theorem is referenced by: usg2spot2nb 26592 |
Copyright terms: Public domain | W3C validator |