Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrwlkdvde Structured version   Visualization version   GIF version

Theorem upgrwlkdvde 40943
Description: In a pseudograph, all edges of a walk consisting of different vertices are different. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspths1wlk 40944. (Contributed by AV, 17-Jan-2021.)
Assertion
Ref Expression
upgrwlkdvde ((𝐺 ∈ UPGraph ∧ 𝐹(1Walks‘𝐺)𝑃 ∧ Fun 𝑃) → Fun 𝐹)

Proof of Theorem upgrwlkdvde
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝐹(1Walks‘𝐺)𝑃) → 𝐹(1Walks‘𝐺)𝑃)
2 wlkv 40815 . . . . . . . . 9 (𝐹(1Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
3 3simpc 1053 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
42, 3syl 17 . . . . . . . 8 (𝐹(1Walks‘𝐺)𝑃 → (𝐹 ∈ V ∧ 𝑃 ∈ V))
54anim2i 591 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝐹(1Walks‘𝐺)𝑃) → (𝐺 ∈ UPGraph ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
6 3anass 1035 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ↔ (𝐺 ∈ UPGraph ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
75, 6sylibr 223 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝐹(1Walks‘𝐺)𝑃) → (𝐺 ∈ UPGraph ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
8 eqid 2610 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
9 eqid 2610 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
108, 9upgriswlk 40849 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
117, 10syl 17 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝐹(1Walks‘𝐺)𝑃) → (𝐹(1Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
121, 11mpbid 221 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(1Walks‘𝐺)𝑃) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
1312ex 449 . . 3 (𝐺 ∈ UPGraph → (𝐹(1Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
14 df-f1 5809 . . . . . . . . 9 (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) ↔ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun 𝑃))
1514simplbi2 653 . . . . . . . 8 (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (Fun 𝑃𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺)))
16153ad2ant2 1076 . . . . . . 7 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (Fun 𝑃𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺)))
1716impcom 445 . . . . . 6 ((Fun 𝑃 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → 𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺))
18 simpr1 1060 . . . . . 6 ((Fun 𝑃 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → 𝐹 ∈ Word dom (iEdg‘𝐺))
1917, 18jca 553 . . . . 5 ((Fun 𝑃 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)))
20 simpr3 1062 . . . . 5 ((Fun 𝑃 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
21 upgrwlkdvdelem 40942 . . . . 5 ((𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → Fun 𝐹))
2219, 20, 21sylc 63 . . . 4 ((Fun 𝑃 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})) → Fun 𝐹)
2322expcom 450 . . 3 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (Fun 𝑃 → Fun 𝐹))
2413, 23syl6 34 . 2 (𝐺 ∈ UPGraph → (𝐹(1Walks‘𝐺)𝑃 → (Fun 𝑃 → Fun 𝐹)))
25243imp 1249 1 ((𝐺 ∈ UPGraph ∧ 𝐹(1Walks‘𝐺)𝑃 ∧ Fun 𝑃) → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  {cpr 4127   class class class wbr 4583  ccnv 5037  dom cdm 5038  Fun wfun 5798  wf 5800  1-1wf1 5801  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146  Vtxcvtx 25673  iEdgciedg 25674   UPGraph cupgr 25747  1Walksc1wlks 40796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-uhgr 25724  df-upgr 25749  df-edga 25793  df-1wlks 40800  df-wlks 40801
This theorem is referenced by:  upgrspths1wlk  40944
  Copyright terms: Public domain W3C validator