Step | Hyp | Ref
| Expression |
1 | | upgrun.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ UPGraph ) |
2 | | upgrun.vg |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
3 | | upgrun.e |
. . . . . 6
⊢ 𝐸 = (iEdg‘𝐺) |
4 | 2, 3 | upgrf 25753 |
. . . . 5
⊢ (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) |
5 | 1, 4 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐸:dom 𝐸⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) |
6 | | upgrun.h |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ UPGraph ) |
7 | | eqid 2610 |
. . . . . . 7
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
8 | | upgrun.f |
. . . . . . 7
⊢ 𝐹 = (iEdg‘𝐻) |
9 | 7, 8 | upgrf 25753 |
. . . . . 6
⊢ (𝐻 ∈ UPGraph → 𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣
(#‘𝑥) ≤
2}) |
10 | 6, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣
(#‘𝑥) ≤
2}) |
11 | | upgrun.vh |
. . . . . . . . . 10
⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
12 | 11 | eqcomd 2616 |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 = (Vtx‘𝐻)) |
13 | 12 | pweqd 4113 |
. . . . . . . 8
⊢ (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻)) |
14 | 13 | difeq1d 3689 |
. . . . . . 7
⊢ (𝜑 → (𝒫 𝑉 ∖ {∅}) = (𝒫
(Vtx‘𝐻) ∖
{∅})) |
15 | 14 | rabeqdv 3167 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} = {𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣
(#‘𝑥) ≤
2}) |
16 | 15 | feq3d 5945 |
. . . . 5
⊢ (𝜑 → (𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ 𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 (Vtx‘𝐻) ∖ {∅}) ∣
(#‘𝑥) ≤
2})) |
17 | 10, 16 | mpbird 246 |
. . . 4
⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) |
18 | | upgrun.i |
. . . 4
⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
19 | 5, 17, 18 | fun2d 5981 |
. . 3
⊢ (𝜑 → (𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) |
20 | | upgrun.un |
. . . 4
⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) |
21 | 20 | dmeqd 5248 |
. . . . 5
⊢ (𝜑 → dom (iEdg‘𝑈) = dom (𝐸 ∪ 𝐹)) |
22 | | dmun 5253 |
. . . . 5
⊢ dom
(𝐸 ∪ 𝐹) = (dom 𝐸 ∪ dom 𝐹) |
23 | 21, 22 | syl6eq 2660 |
. . . 4
⊢ (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹)) |
24 | | upgrun.v |
. . . . . . 7
⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
25 | 24 | pweqd 4113 |
. . . . . 6
⊢ (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉) |
26 | 25 | difeq1d 3689 |
. . . . 5
⊢ (𝜑 → (𝒫
(Vtx‘𝑈) ∖
{∅}) = (𝒫 𝑉
∖ {∅})) |
27 | 26 | rabeqdv 3167 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣
(#‘𝑥) ≤ 2} =
{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(#‘𝑥) ≤
2}) |
28 | 20, 23, 27 | feq123d 5947 |
. . 3
⊢ (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣
(#‘𝑥) ≤ 2} ↔
(𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})) |
29 | 19, 28 | mpbird 246 |
. 2
⊢ (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣
(#‘𝑥) ≤
2}) |
30 | | upgrun.u |
. . 3
⊢ (𝜑 → 𝑈 ∈ 𝑊) |
31 | | eqid 2610 |
. . . 4
⊢
(Vtx‘𝑈) =
(Vtx‘𝑈) |
32 | | eqid 2610 |
. . . 4
⊢
(iEdg‘𝑈) =
(iEdg‘𝑈) |
33 | 31, 32 | isupgr 25751 |
. . 3
⊢ (𝑈 ∈ 𝑊 → (𝑈 ∈ UPGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣
(#‘𝑥) ≤
2})) |
34 | 30, 33 | syl 17 |
. 2
⊢ (𝜑 → (𝑈 ∈ UPGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ (𝒫 (Vtx‘𝑈) ∖ {∅}) ∣
(#‘𝑥) ≤
2})) |
35 | 29, 34 | mpbird 246 |
1
⊢ (𝜑 → 𝑈 ∈ UPGraph ) |