MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdomlem3 Structured version   Visualization version   GIF version

Theorem unxpdomlem3 8051
Description: Lemma for unxpdom 8052. (Contributed by Mario Carneiro, 13-Jan-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
unxpdomlem1.1 𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)
unxpdomlem1.2 𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
Assertion
Ref Expression
unxpdomlem3 ((1𝑜𝑎 ∧ 1𝑜𝑏) → (𝑎𝑏) ≼ (𝑎 × 𝑏))
Distinct variable group:   𝑎,𝑏,𝑚,𝑛,𝑠,𝑡,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑡,𝑚,𝑛,𝑠,𝑎,𝑏)   𝐺(𝑥,𝑡,𝑚,𝑛,𝑠,𝑎,𝑏)

Proof of Theorem unxpdomlem3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3176 . . 3 𝑎 ∈ V
2 1sdom 8048 . . 3 (𝑎 ∈ V → (1𝑜𝑎 ↔ ∃𝑚𝑎𝑛𝑎 ¬ 𝑚 = 𝑛))
31, 2ax-mp 5 . 2 (1𝑜𝑎 ↔ ∃𝑚𝑎𝑛𝑎 ¬ 𝑚 = 𝑛)
4 vex 3176 . . 3 𝑏 ∈ V
5 1sdom 8048 . . 3 (𝑏 ∈ V → (1𝑜𝑏 ↔ ∃𝑠𝑏𝑡𝑏 ¬ 𝑠 = 𝑡))
64, 5ax-mp 5 . 2 (1𝑜𝑏 ↔ ∃𝑠𝑏𝑡𝑏 ¬ 𝑠 = 𝑡)
7 reeanv 3086 . . 3 (∃𝑚𝑎𝑠𝑏 (∃𝑛𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑡𝑏 ¬ 𝑠 = 𝑡) ↔ (∃𝑚𝑎𝑛𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑠𝑏𝑡𝑏 ¬ 𝑠 = 𝑡))
8 reeanv 3086 . . . . 5 (∃𝑛𝑎𝑡𝑏𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ↔ (∃𝑛𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑡𝑏 ¬ 𝑠 = 𝑡))
9 unxpdomlem1.2 . . . . . . . . . . 11 𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
10 simpr 476 . . . . . . . . . . . . 13 (((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ 𝑥𝑎) → 𝑥𝑎)
11 simp2r 1081 . . . . . . . . . . . . . . 15 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝑡𝑏)
12 simp1r 1079 . . . . . . . . . . . . . . 15 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝑠𝑏)
1311, 12ifcld 4081 . . . . . . . . . . . . . 14 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → if(𝑥 = 𝑚, 𝑡, 𝑠) ∈ 𝑏)
1413ad2antrr 758 . . . . . . . . . . . . 13 (((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ 𝑥𝑎) → if(𝑥 = 𝑚, 𝑡, 𝑠) ∈ 𝑏)
15 opelxpi 5072 . . . . . . . . . . . . 13 ((𝑥𝑎 ∧ if(𝑥 = 𝑚, 𝑡, 𝑠) ∈ 𝑏) → ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ ∈ (𝑎 × 𝑏))
1610, 14, 15syl2anc 691 . . . . . . . . . . . 12 (((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ 𝑥𝑎) → ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ ∈ (𝑎 × 𝑏))
17 simp2l 1080 . . . . . . . . . . . . . . 15 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝑛𝑎)
18 simp1l 1078 . . . . . . . . . . . . . . 15 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝑚𝑎)
1917, 18ifcld 4081 . . . . . . . . . . . . . 14 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → if(𝑥 = 𝑡, 𝑛, 𝑚) ∈ 𝑎)
2019ad2antrr 758 . . . . . . . . . . . . 13 (((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ ¬ 𝑥𝑎) → if(𝑥 = 𝑡, 𝑛, 𝑚) ∈ 𝑎)
21 simpr 476 . . . . . . . . . . . . . . 15 ((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) → 𝑥 ∈ (𝑎𝑏))
22 elun 3715 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑎𝑏) ↔ (𝑥𝑎𝑥𝑏))
2321, 22sylib 207 . . . . . . . . . . . . . 14 ((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) → (𝑥𝑎𝑥𝑏))
2423orcanai 950 . . . . . . . . . . . . 13 (((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ ¬ 𝑥𝑎) → 𝑥𝑏)
25 opelxpi 5072 . . . . . . . . . . . . 13 ((if(𝑥 = 𝑡, 𝑛, 𝑚) ∈ 𝑎𝑥𝑏) → ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩ ∈ (𝑎 × 𝑏))
2620, 24, 25syl2anc 691 . . . . . . . . . . . 12 (((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) ∧ ¬ 𝑥𝑎) → ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩ ∈ (𝑎 × 𝑏))
2716, 26ifclda 4070 . . . . . . . . . . 11 ((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) → if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩) ∈ (𝑎 × 𝑏))
289, 27syl5eqel 2692 . . . . . . . . . 10 ((((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) ∧ 𝑥 ∈ (𝑎𝑏)) → 𝐺 ∈ (𝑎 × 𝑏))
29 unxpdomlem1.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)
3028, 29fmptd 6292 . . . . . . . . 9 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝐹:(𝑎𝑏)⟶(𝑎 × 𝑏))
3129, 9unxpdomlem1 8049 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑎𝑏) → (𝐹𝑧) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
3231ad2antrl 760 . . . . . . . . . . . . . . 15 (((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) → (𝐹𝑧) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
33 iftrue 4042 . . . . . . . . . . . . . . . 16 (𝑧𝑎 → if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩) = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
3433adantr 480 . . . . . . . . . . . . . . 15 ((𝑧𝑎𝑤𝑎) → if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩) = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
3532, 34sylan9eq 2664 . . . . . . . . . . . . . 14 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (𝑧𝑎𝑤𝑎)) → (𝐹𝑧) = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
3629, 9unxpdomlem1 8049 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝑎𝑏) → (𝐹𝑤) = if(𝑤𝑎, ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩))
3736ad2antll 761 . . . . . . . . . . . . . . 15 (((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) → (𝐹𝑤) = if(𝑤𝑎, ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩))
38 iftrue 4042 . . . . . . . . . . . . . . . 16 (𝑤𝑎 → if(𝑤𝑎, ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩) = ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩)
3938adantl 481 . . . . . . . . . . . . . . 15 ((𝑧𝑎𝑤𝑎) → if(𝑤𝑎, ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩) = ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩)
4037, 39sylan9eq 2664 . . . . . . . . . . . . . 14 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (𝑧𝑎𝑤𝑎)) → (𝐹𝑤) = ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩)
4135, 40eqeq12d 2625 . . . . . . . . . . . . 13 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (𝑧𝑎𝑤𝑎)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩))
42 vex 3176 . . . . . . . . . . . . . 14 𝑧 ∈ V
43 vex 3176 . . . . . . . . . . . . . . 15 𝑡 ∈ V
44 vex 3176 . . . . . . . . . . . . . . 15 𝑠 ∈ V
4543, 44ifex 4106 . . . . . . . . . . . . . 14 if(𝑧 = 𝑚, 𝑡, 𝑠) ∈ V
4642, 45opth1 4870 . . . . . . . . . . . . 13 (⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩ → 𝑧 = 𝑤)
4741, 46syl6bi 242 . . . . . . . . . . . 12 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (𝑧𝑎𝑤𝑎)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
48 simprr 792 . . . . . . . . . . . . . 14 (((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) → 𝑤 ∈ (𝑎𝑏))
49 simpll 786 . . . . . . . . . . . . . 14 (((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) → ¬ 𝑚 = 𝑛)
50 simplr 788 . . . . . . . . . . . . . 14 (((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) → ¬ 𝑠 = 𝑡)
5129, 9, 48, 49, 50unxpdomlem2 8050 . . . . . . . . . . . . 13 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (𝑧𝑎 ∧ ¬ 𝑤𝑎)) → ¬ (𝐹𝑧) = (𝐹𝑤))
5251pm2.21d 117 . . . . . . . . . . . 12 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (𝑧𝑎 ∧ ¬ 𝑤𝑎)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
53 eqcom 2617 . . . . . . . . . . . . 13 ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑤) = (𝐹𝑧))
54 simprl 790 . . . . . . . . . . . . . . . 16 (((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) → 𝑧 ∈ (𝑎𝑏))
5529, 9, 54, 49, 50unxpdomlem2 8050 . . . . . . . . . . . . . . 15 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (𝑤𝑎 ∧ ¬ 𝑧𝑎)) → ¬ (𝐹𝑤) = (𝐹𝑧))
5655ancom2s 840 . . . . . . . . . . . . . 14 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (¬ 𝑧𝑎𝑤𝑎)) → ¬ (𝐹𝑤) = (𝐹𝑧))
5756pm2.21d 117 . . . . . . . . . . . . 13 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (¬ 𝑧𝑎𝑤𝑎)) → ((𝐹𝑤) = (𝐹𝑧) → 𝑧 = 𝑤))
5853, 57syl5bi 231 . . . . . . . . . . . 12 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (¬ 𝑧𝑎𝑤𝑎)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
59 iffalse 4045 . . . . . . . . . . . . . . . 16 𝑧𝑎 → if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩) = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
6059adantr 480 . . . . . . . . . . . . . . 15 ((¬ 𝑧𝑎 ∧ ¬ 𝑤𝑎) → if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩) = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
6132, 60sylan9eq 2664 . . . . . . . . . . . . . 14 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (¬ 𝑧𝑎 ∧ ¬ 𝑤𝑎)) → (𝐹𝑧) = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
62 iffalse 4045 . . . . . . . . . . . . . . . 16 𝑤𝑎 → if(𝑤𝑎, ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩) = ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩)
6362adantl 481 . . . . . . . . . . . . . . 15 ((¬ 𝑧𝑎 ∧ ¬ 𝑤𝑎) → if(𝑤𝑎, ⟨𝑤, if(𝑤 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩) = ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩)
6437, 63sylan9eq 2664 . . . . . . . . . . . . . 14 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (¬ 𝑧𝑎 ∧ ¬ 𝑤𝑎)) → (𝐹𝑤) = ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩)
6561, 64eqeq12d 2625 . . . . . . . . . . . . 13 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (¬ 𝑧𝑎 ∧ ¬ 𝑤𝑎)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩ = ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩))
66 vex 3176 . . . . . . . . . . . . . . . 16 𝑛 ∈ V
67 vex 3176 . . . . . . . . . . . . . . . 16 𝑚 ∈ V
6866, 67ifex 4106 . . . . . . . . . . . . . . 15 if(𝑧 = 𝑡, 𝑛, 𝑚) ∈ V
6968, 42opth 4871 . . . . . . . . . . . . . 14 (⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩ = ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩ ↔ (if(𝑧 = 𝑡, 𝑛, 𝑚) = if(𝑤 = 𝑡, 𝑛, 𝑚) ∧ 𝑧 = 𝑤))
7069simprbi 479 . . . . . . . . . . . . 13 (⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩ = ⟨if(𝑤 = 𝑡, 𝑛, 𝑚), 𝑤⟩ → 𝑧 = 𝑤)
7165, 70syl6bi 242 . . . . . . . . . . . 12 ((((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) ∧ (¬ 𝑧𝑎 ∧ ¬ 𝑤𝑎)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
7247, 52, 58, 714casesdan 988 . . . . . . . . . . 11 (((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) ∧ (𝑧 ∈ (𝑎𝑏) ∧ 𝑤 ∈ (𝑎𝑏))) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
7372ralrimivva 2954 . . . . . . . . . 10 ((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) → ∀𝑧 ∈ (𝑎𝑏)∀𝑤 ∈ (𝑎𝑏)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
74733ad2ant3 1077 . . . . . . . . 9 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → ∀𝑧 ∈ (𝑎𝑏)∀𝑤 ∈ (𝑎𝑏)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
75 dff13 6416 . . . . . . . . 9 (𝐹:(𝑎𝑏)–1-1→(𝑎 × 𝑏) ↔ (𝐹:(𝑎𝑏)⟶(𝑎 × 𝑏) ∧ ∀𝑧 ∈ (𝑎𝑏)∀𝑤 ∈ (𝑎𝑏)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
7630, 74, 75sylanbrc 695 . . . . . . . 8 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → 𝐹:(𝑎𝑏)–1-1→(𝑎 × 𝑏))
771, 4unex 6854 . . . . . . . . 9 (𝑎𝑏) ∈ V
781, 4xpex 6860 . . . . . . . . 9 (𝑎 × 𝑏) ∈ V
79 f1dom2g 7859 . . . . . . . . 9 (((𝑎𝑏) ∈ V ∧ (𝑎 × 𝑏) ∈ V ∧ 𝐹:(𝑎𝑏)–1-1→(𝑎 × 𝑏)) → (𝑎𝑏) ≼ (𝑎 × 𝑏))
8077, 78, 79mp3an12 1406 . . . . . . . 8 (𝐹:(𝑎𝑏)–1-1→(𝑎 × 𝑏) → (𝑎𝑏) ≼ (𝑎 × 𝑏))
8176, 80syl 17 . . . . . . 7 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏) ∧ (¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡)) → (𝑎𝑏) ≼ (𝑎 × 𝑏))
82813expia 1259 . . . . . 6 (((𝑚𝑎𝑠𝑏) ∧ (𝑛𝑎𝑡𝑏)) → ((¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) → (𝑎𝑏) ≼ (𝑎 × 𝑏)))
8382rexlimdvva 3020 . . . . 5 ((𝑚𝑎𝑠𝑏) → (∃𝑛𝑎𝑡𝑏𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡) → (𝑎𝑏) ≼ (𝑎 × 𝑏)))
848, 83syl5bir 232 . . . 4 ((𝑚𝑎𝑠𝑏) → ((∃𝑛𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑡𝑏 ¬ 𝑠 = 𝑡) → (𝑎𝑏) ≼ (𝑎 × 𝑏)))
8584rexlimivv 3018 . . 3 (∃𝑚𝑎𝑠𝑏 (∃𝑛𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑡𝑏 ¬ 𝑠 = 𝑡) → (𝑎𝑏) ≼ (𝑎 × 𝑏))
867, 85sylbir 224 . 2 ((∃𝑚𝑎𝑛𝑎 ¬ 𝑚 = 𝑛 ∧ ∃𝑠𝑏𝑡𝑏 ¬ 𝑠 = 𝑡) → (𝑎𝑏) ≼ (𝑎 × 𝑏))
873, 6, 86syl2anb 495 1 ((1𝑜𝑎 ∧ 1𝑜𝑏) → (𝑎𝑏) ≼ (𝑎 × 𝑏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cun 3538  ifcif 4036  cop 4131   class class class wbr 4583  cmpt 4643   × cxp 5036  wf 5800  1-1wf1 5801  cfv 5804  1𝑜c1o 7440  cdom 7839  csdm 7840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-2o 7448  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844
This theorem is referenced by:  unxpdom  8052
  Copyright terms: Public domain W3C validator