MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unwf Structured version   Visualization version   GIF version

Theorem unwf 8556
Description: A binary union is well-founded iff its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
unwf ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) ↔ (𝐴𝐵) ∈ (𝑅1 “ On))

Proof of Theorem unwf
StepHypRef Expression
1 r1rankidb 8550 . . . . . . . 8 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
21adantr 480 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
3 ssun1 3738 . . . . . . . 8 (rank‘𝐴) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵))
4 rankdmr1 8547 . . . . . . . . 9 (rank‘𝐴) ∈ dom 𝑅1
5 r1funlim 8512 . . . . . . . . . . . 12 (Fun 𝑅1 ∧ Lim dom 𝑅1)
65simpri 477 . . . . . . . . . . 11 Lim dom 𝑅1
7 limord 5701 . . . . . . . . . . 11 (Lim dom 𝑅1 → Ord dom 𝑅1)
86, 7ax-mp 5 . . . . . . . . . 10 Ord dom 𝑅1
9 rankdmr1 8547 . . . . . . . . . 10 (rank‘𝐵) ∈ dom 𝑅1
10 ordunel 6919 . . . . . . . . . 10 ((Ord dom 𝑅1 ∧ (rank‘𝐴) ∈ dom 𝑅1 ∧ (rank‘𝐵) ∈ dom 𝑅1) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1)
118, 4, 9, 10mp3an 1416 . . . . . . . . 9 ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1
12 r1ord3g 8525 . . . . . . . . 9 (((rank‘𝐴) ∈ dom 𝑅1 ∧ ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))))
134, 11, 12mp2an 704 . . . . . . . 8 ((rank‘𝐴) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
143, 13ax-mp 5 . . . . . . 7 (𝑅1‘(rank‘𝐴)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))
152, 14syl6ss 3580 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐴 ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
16 r1rankidb 8550 . . . . . . . 8 (𝐵 (𝑅1 “ On) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵)))
1716adantl 481 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵)))
18 ssun2 3739 . . . . . . . 8 (rank‘𝐵) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵))
19 r1ord3g 8525 . . . . . . . . 9 (((rank‘𝐵) ∈ dom 𝑅1 ∧ ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1) → ((rank‘𝐵) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))))
209, 11, 19mp2an 704 . . . . . . . 8 ((rank‘𝐵) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2118, 20ax-mp 5 . . . . . . 7 (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))
2217, 21syl6ss 3580 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → 𝐵 ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2315, 22unssd 3751 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
24 fvex 6113 . . . . . 6 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))) ∈ V
2524elpw2 4755 . . . . 5 ((𝐴𝐵) ∈ 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))) ↔ (𝐴𝐵) ⊆ (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2623, 25sylibr 223 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ∈ 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
27 r1sucg 8515 . . . . 5 (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ dom 𝑅1 → (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))) = 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵))))
2811, 27ax-mp 5 . . . 4 (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))) = 𝒫 (𝑅1‘((rank‘𝐴) ∪ (rank‘𝐵)))
2926, 28syl6eleqr 2699 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ∈ (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))))
30 r1elwf 8542 . . 3 ((𝐴𝐵) ∈ (𝑅1‘suc ((rank‘𝐴) ∪ (rank‘𝐵))) → (𝐴𝐵) ∈ (𝑅1 “ On))
3129, 30syl 17 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝐴𝐵) ∈ (𝑅1 “ On))
32 ssun1 3738 . . . 4 𝐴 ⊆ (𝐴𝐵)
33 sswf 8554 . . . 4 (((𝐴𝐵) ∈ (𝑅1 “ On) ∧ 𝐴 ⊆ (𝐴𝐵)) → 𝐴 (𝑅1 “ On))
3432, 33mpan2 703 . . 3 ((𝐴𝐵) ∈ (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
35 ssun2 3739 . . . 4 𝐵 ⊆ (𝐴𝐵)
36 sswf 8554 . . . 4 (((𝐴𝐵) ∈ (𝑅1 “ On) ∧ 𝐵 ⊆ (𝐴𝐵)) → 𝐵 (𝑅1 “ On))
3735, 36mpan2 703 . . 3 ((𝐴𝐵) ∈ (𝑅1 “ On) → 𝐵 (𝑅1 “ On))
3834, 37jca 553 . 2 ((𝐴𝐵) ∈ (𝑅1 “ On) → (𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)))
3931, 38impbii 198 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) ↔ (𝐴𝐵) ∈ (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  cun 3538  wss 3540  𝒫 cpw 4108   cuni 4372  dom cdm 5038  cima 5041  Ord word 5639  Oncon0 5640  Lim wlim 5641  suc csuc 5642  Fun wfun 5798  cfv 5804  𝑅1cr1 8508  rankcrnk 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-r1 8510  df-rank 8511
This theorem is referenced by:  prwf  8557  rankunb  8596
  Copyright terms: Public domain W3C validator