MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unsnen Structured version   Visualization version   GIF version

Theorem unsnen 9254
Description: Equinumerosity of a set with a new element added. (Contributed by NM, 7-Nov-2008.)
Hypotheses
Ref Expression
unsnen.1 𝐴 ∈ V
unsnen.2 𝐵 ∈ V
Assertion
Ref Expression
unsnen 𝐵𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴))

Proof of Theorem unsnen
StepHypRef Expression
1 disjsn 4192 . . 3 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
2 cardon 8653 . . . . . 6 (card‘𝐴) ∈ On
32onordi 5749 . . . . 5 Ord (card‘𝐴)
4 orddisj 5679 . . . . 5 (Ord (card‘𝐴) → ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅)
53, 4ax-mp 5 . . . 4 ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅
6 unsnen.1 . . . . . . 7 𝐴 ∈ V
76cardid 9248 . . . . . 6 (card‘𝐴) ≈ 𝐴
87ensymi 7892 . . . . 5 𝐴 ≈ (card‘𝐴)
9 unsnen.2 . . . . . 6 𝐵 ∈ V
10 fvex 6113 . . . . . 6 (card‘𝐴) ∈ V
11 en2sn 7922 . . . . . 6 ((𝐵 ∈ V ∧ (card‘𝐴) ∈ V) → {𝐵} ≈ {(card‘𝐴)})
129, 10, 11mp2an 704 . . . . 5 {𝐵} ≈ {(card‘𝐴)}
13 unen 7925 . . . . 5 (((𝐴 ≈ (card‘𝐴) ∧ {𝐵} ≈ {(card‘𝐴)}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)}))
148, 12, 13mpanl12 714 . . . 4 (((𝐴 ∩ {𝐵}) = ∅ ∧ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅) → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)}))
155, 14mpan2 703 . . 3 ((𝐴 ∩ {𝐵}) = ∅ → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)}))
161, 15sylbir 224 . 2 𝐵𝐴 → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)}))
17 df-suc 5646 . 2 suc (card‘𝐴) = ((card‘𝐴) ∪ {(card‘𝐴)})
1816, 17syl6breqr 4625 1 𝐵𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cun 3538  cin 3539  c0 3874  {csn 4125   class class class wbr 4583  Ord word 5639  suc csuc 5642  cfv 5804  cen 7838  cardccrd 8644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-ac2 9168
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-wrecs 7294  df-recs 7355  df-1o 7447  df-er 7629  df-en 7842  df-card 8648  df-ac 8822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator