MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unopab Structured version   Visualization version   GIF version

Theorem unopab 4660
Description: Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
unopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}

Proof of Theorem unopab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 unab 3853 . . 3 ({𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ∪ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}) = {𝑧 ∣ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))}
2 19.43 1799 . . . . 5 (∃𝑥(∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
3 andi 907 . . . . . . . 8 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)) ↔ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
43exbii 1764 . . . . . . 7 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)) ↔ ∃𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
5 19.43 1799 . . . . . . 7 (∃𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
64, 5bitr2i 264 . . . . . 6 ((∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)))
76exbii 1764 . . . . 5 (∃𝑥(∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)))
82, 7bitr3i 265 . . . 4 ((∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓)))
98abbii 2726 . . 3 {𝑧 ∣ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ∨ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓))}
101, 9eqtri 2632 . 2 ({𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ∪ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}) = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓))}
11 df-opab 4644 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
12 df-opab 4644 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
1311, 12uneq12i 3727 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = ({𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ∪ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)})
14 df-opab 4644 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝜑𝜓))}
1510, 13, 143eqtr4i 2642 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wo 382  wa 383   = wceq 1475  wex 1695  {cab 2596  cun 3538  cop 4131  {copab 4642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-un 3545  df-opab 4644
This theorem is referenced by:  xpundi  5094  xpundir  5095  cnvun  5457  coundi  5553  coundir  5554  mptun  5938  opsrtoslem1  19305  lgsquadlem3  24907
  Copyright terms: Public domain W3C validator