MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissint Structured version   Visualization version   GIF version

Theorem unissint 4436
Description: If the union of a class is included in its intersection, the class is either the empty set or a singleton (uniintsn 4449). (Contributed by NM, 30-Oct-2010.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
unissint ( 𝐴 𝐴 ↔ (𝐴 = ∅ ∨ 𝐴 = 𝐴))

Proof of Theorem unissint
StepHypRef Expression
1 simpl 472 . . . . 5 (( 𝐴 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 𝐴)
2 df-ne 2782 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
3 intssuni 4434 . . . . . . 7 (𝐴 ≠ ∅ → 𝐴 𝐴)
42, 3sylbir 224 . . . . . 6 𝐴 = ∅ → 𝐴 𝐴)
54adantl 481 . . . . 5 (( 𝐴 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 𝐴)
61, 5eqssd 3585 . . . 4 (( 𝐴 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 = 𝐴)
76ex 449 . . 3 ( 𝐴 𝐴 → (¬ 𝐴 = ∅ → 𝐴 = 𝐴))
87orrd 392 . 2 ( 𝐴 𝐴 → (𝐴 = ∅ ∨ 𝐴 = 𝐴))
9 ssv 3588 . . . . 5 𝐴 ⊆ V
10 int0 4425 . . . . 5 ∅ = V
119, 10sseqtr4i 3601 . . . 4 𝐴
12 inteq 4413 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
1311, 12syl5sseqr 3617 . . 3 (𝐴 = ∅ → 𝐴 𝐴)
14 eqimss 3620 . . 3 ( 𝐴 = 𝐴 𝐴 𝐴)
1513, 14jaoi 393 . 2 ((𝐴 = ∅ ∨ 𝐴 = 𝐴) → 𝐴 𝐴)
168, 15impbii 198 1 ( 𝐴 𝐴 ↔ (𝐴 = ∅ ∨ 𝐴 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wo 382  wa 383   = wceq 1475  wne 2780  Vcvv 3173  wss 3540  c0 3874   cuni 4372   cint 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-nul 3875  df-uni 4373  df-int 4411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator