Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisnALT Structured version   Visualization version   GIF version

Theorem unisnALT 38184
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. The User manually input on a mmj2 Proof Worksheet, without labels, all steps of unisnALT 38184 except 1, 11, 15, 21, and 30. With execution of the mmj2 unification command, mmj2 could find labels for all steps except for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15, 21, and 30) . mmj2 could not find reference theorems for those five steps because the hypothesis field of each of these steps was empty and none of those steps unifies with a theorem in set.mm. Each of these five steps is a semantic variation of a theorem in set.mm and is 2-step provable. mmj2 does not have the ability to automatically generate the semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis deduction whose hypothesis is a theorem in set.mm which unifies with the theorem in the Proof Worksheet. The stepprover.c program, which invokes mmj2, has this capability. stepprover.c automatically generated steps 1, 11, 15, 21, and 30, labeled all steps, and generated the RPN proof of unisnALT 38184. Roughly speaking, stepprover.c added to the Proof Worksheet a labeled duplicate step of each non-unifying theorem for each label in a text file, labels.txt, containing a list of labels provided by the User. Upon mmj2 unification, stepprover.c identified a label for each of the five theorems which 2-step proves it. For unisnALT 38184, the label list is a list of all 1-hypothesis propositional calculus deductions in set.mm. stepproverp.c is the same as stepprover.c except that it intermittently pauses during execution, allowing the User to observe the changes to a text file caused by the execution of particular statements of the program. (Contributed by Alan Sare, 19-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
unisnALT.1 𝐴 ∈ V
Assertion
Ref Expression
unisnALT {𝐴} = 𝐴

Proof of Theorem unisnALT
Dummy variables 𝑥 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 4375 . . . . . 6 (𝑥 {𝐴} ↔ ∃𝑞(𝑥𝑞𝑞 ∈ {𝐴}))
21biimpi 205 . . . . 5 (𝑥 {𝐴} → ∃𝑞(𝑥𝑞𝑞 ∈ {𝐴}))
3 id 22 . . . . . . . . 9 ((𝑥𝑞𝑞 ∈ {𝐴}) → (𝑥𝑞𝑞 ∈ {𝐴}))
4 simpl 472 . . . . . . . . 9 ((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝑞)
53, 4syl 17 . . . . . . . 8 ((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝑞)
6 simpr 476 . . . . . . . . . 10 ((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑞 ∈ {𝐴})
73, 6syl 17 . . . . . . . . 9 ((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑞 ∈ {𝐴})
8 elsni 4142 . . . . . . . . 9 (𝑞 ∈ {𝐴} → 𝑞 = 𝐴)
97, 8syl 17 . . . . . . . 8 ((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑞 = 𝐴)
10 eleq2 2677 . . . . . . . . 9 (𝑞 = 𝐴 → (𝑥𝑞𝑥𝐴))
1110biimpac 502 . . . . . . . 8 ((𝑥𝑞𝑞 = 𝐴) → 𝑥𝐴)
125, 9, 11syl2anc 691 . . . . . . 7 ((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴)
1312ax-gen 1713 . . . . . 6 𝑞((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴)
14 19.23v 1889 . . . . . . 7 (∀𝑞((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴) ↔ (∃𝑞(𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴))
1514biimpi 205 . . . . . 6 (∀𝑞((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴) → (∃𝑞(𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴))
1613, 15ax-mp 5 . . . . 5 (∃𝑞(𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴)
17 pm3.35 609 . . . . 5 ((∃𝑞(𝑥𝑞𝑞 ∈ {𝐴}) ∧ (∃𝑞(𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴)) → 𝑥𝐴)
182, 16, 17sylancl 693 . . . 4 (𝑥 {𝐴} → 𝑥𝐴)
1918ax-gen 1713 . . 3 𝑥(𝑥 {𝐴} → 𝑥𝐴)
20 dfss2 3557 . . . 4 ( {𝐴} ⊆ 𝐴 ↔ ∀𝑥(𝑥 {𝐴} → 𝑥𝐴))
2120biimpri 217 . . 3 (∀𝑥(𝑥 {𝐴} → 𝑥𝐴) → {𝐴} ⊆ 𝐴)
2219, 21ax-mp 5 . 2 {𝐴} ⊆ 𝐴
23 id 22 . . . . 5 (𝑥𝐴𝑥𝐴)
24 unisnALT.1 . . . . . 6 𝐴 ∈ V
2524snid 4155 . . . . 5 𝐴 ∈ {𝐴}
26 elunii 4377 . . . . 5 ((𝑥𝐴𝐴 ∈ {𝐴}) → 𝑥 {𝐴})
2723, 25, 26sylancl 693 . . . 4 (𝑥𝐴𝑥 {𝐴})
2827ax-gen 1713 . . 3 𝑥(𝑥𝐴𝑥 {𝐴})
29 dfss2 3557 . . . 4 (𝐴 {𝐴} ↔ ∀𝑥(𝑥𝐴𝑥 {𝐴}))
3029biimpri 217 . . 3 (∀𝑥(𝑥𝐴𝑥 {𝐴}) → 𝐴 {𝐴})
3128, 30ax-mp 5 . 2 𝐴 {𝐴}
3222, 31eqssi 3584 1 {𝐴} = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  wss 3540  {csn 4125   cuni 4372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-in 3547  df-ss 3554  df-sn 4126  df-uni 4373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator