 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisn3 Structured version   Visualization version   GIF version

Theorem unisn3 4389
 Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.)
Assertion
Ref Expression
unisn3 (𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unisn3
StepHypRef Expression
1 rabsn 4200 . . 3 (𝐴𝐵 → {𝑥𝐵𝑥 = 𝐴} = {𝐴})
21unieqd 4382 . 2 (𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = {𝐴})
3 unisng 4388 . 2 (𝐴𝐵 {𝐴} = 𝐴)
42, 3eqtrd 2644 1 (𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  {crab 2900  {csn 4125  ∪ cuni 4372 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-un 3545  df-sn 4126  df-pr 4128  df-uni 4373 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator