Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > unisalgen | Structured version Visualization version GIF version |
Description: The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
unisalgen.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
unisalgen.s | ⊢ 𝑆 = (SalGen‘𝑋) |
unisalgen.u | ⊢ 𝑈 = ∪ 𝑋 |
Ref | Expression |
---|---|
unisalgen | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisalgen.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | unisalgen.s | . . . 4 ⊢ 𝑆 = (SalGen‘𝑋) | |
3 | unisalgen.u | . . . 4 ⊢ 𝑈 = ∪ 𝑋 | |
4 | 1, 2, 3 | salgenuni 39231 | . . 3 ⊢ (𝜑 → ∪ 𝑆 = 𝑈) |
5 | 4 | eqcomd 2616 | . 2 ⊢ (𝜑 → 𝑈 = ∪ 𝑆) |
6 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑆 = (SalGen‘𝑋)) |
7 | salgencl 39226 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) ∈ SAlg) | |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (SalGen‘𝑋) ∈ SAlg) |
9 | 6, 8 | eqeltrd 2688 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
10 | saluni 39220 | . . 3 ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) |
12 | 5, 11 | eqeltrd 2688 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ∪ cuni 4372 ‘cfv 5804 SAlgcsalg 39204 SalGencsalgen 39208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-int 4411 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-salg 39205 df-salgen 39209 |
This theorem is referenced by: salgensscntex 39238 |
Copyright terms: Public domain | W3C validator |