MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniqs2 Structured version   Visualization version   GIF version

Theorem uniqs2 7696
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
qsss.1 (𝜑𝑅 Er 𝐴)
qsss.2 (𝜑𝑅𝑉)
Assertion
Ref Expression
uniqs2 (𝜑 (𝐴 / 𝑅) = 𝐴)

Proof of Theorem uniqs2
StepHypRef Expression
1 qsss.2 . . . . 5 (𝜑𝑅𝑉)
2 uniqs 7694 . . . . 5 (𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
31, 2syl 17 . . . 4 (𝜑 (𝐴 / 𝑅) = (𝑅𝐴))
4 qsss.1 . . . . . 6 (𝜑𝑅 Er 𝐴)
5 erdm 7639 . . . . . 6 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
64, 5syl 17 . . . . 5 (𝜑 → dom 𝑅 = 𝐴)
76imaeq2d 5385 . . . 4 (𝜑 → (𝑅 “ dom 𝑅) = (𝑅𝐴))
83, 7eqtr4d 2647 . . 3 (𝜑 (𝐴 / 𝑅) = (𝑅 “ dom 𝑅))
9 imadmrn 5395 . . 3 (𝑅 “ dom 𝑅) = ran 𝑅
108, 9syl6eq 2660 . 2 (𝜑 (𝐴 / 𝑅) = ran 𝑅)
11 errn 7651 . . 3 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
124, 11syl 17 . 2 (𝜑 → ran 𝑅 = 𝐴)
1310, 12eqtrd 2644 1 (𝜑 (𝐴 / 𝑅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977   cuni 4372  dom cdm 5038  ran crn 5039  cima 5041   Er wer 7626   / cqs 7628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-er 7629  df-ec 7631  df-qs 7635
This theorem is referenced by:  qshash  14398  cldsubg  21724  pi1buni  22648
  Copyright terms: Public domain W3C validator