Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniqs | Structured version Visualization version GIF version |
Description: The union of a quotient set. (Contributed by NM, 9-Dec-2008.) |
Ref | Expression |
---|---|
uniqs | ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecexg 7633 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → [𝑥]𝑅 ∈ V) | |
2 | 1 | ralrimivw 2950 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 [𝑥]𝑅 ∈ V) |
3 | dfiun2g 4488 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 [𝑥]𝑅 ∈ V → ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅}) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅}) |
5 | 4 | eqcomd 2616 | . 2 ⊢ (𝑅 ∈ 𝑉 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} = ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅) |
6 | df-qs 7635 | . . 3 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
7 | 6 | unieqi 4381 | . 2 ⊢ ∪ (𝐴 / 𝑅) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
8 | df-ec 7631 | . . . . 5 ⊢ [𝑥]𝑅 = (𝑅 “ {𝑥}) | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → [𝑥]𝑅 = (𝑅 “ {𝑥})) |
10 | 9 | iuneq2i 4475 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 = ∪ 𝑥 ∈ 𝐴 (𝑅 “ {𝑥}) |
11 | imaiun 6407 | . . 3 ⊢ (𝑅 “ ∪ 𝑥 ∈ 𝐴 {𝑥}) = ∪ 𝑥 ∈ 𝐴 (𝑅 “ {𝑥}) | |
12 | iunid 4511 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
13 | 12 | imaeq2i 5383 | . . 3 ⊢ (𝑅 “ ∪ 𝑥 ∈ 𝐴 {𝑥}) = (𝑅 “ 𝐴) |
14 | 10, 11, 13 | 3eqtr2ri 2639 | . 2 ⊢ (𝑅 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 |
15 | 5, 7, 14 | 3eqtr4g 2669 | 1 ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 {cab 2596 ∀wral 2896 ∃wrex 2897 Vcvv 3173 {csn 4125 ∪ cuni 4372 ∪ ciun 4455 “ cima 5041 [cec 7627 / cqs 7628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-xp 5044 df-cnv 5046 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-ec 7631 df-qs 7635 |
This theorem is referenced by: uniqs2 7696 ecqs 7698 |
Copyright terms: Public domain | W3C validator |