Step | Hyp | Ref
| Expression |
1 | | simp1 1054 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → 𝐹 Fn 𝐴) |
2 | | simpl 472 |
. . . . . . . 8
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) |
3 | | simpr 476 |
. . . . . . . 8
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → 𝐶 ⊆ 𝐴) |
4 | 2, 3 | unssd 3751 |
. . . . . . 7
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐵 ∪ 𝐶) ⊆ 𝐴) |
5 | 4 | 3adant1 1072 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐵 ∪ 𝐶) ⊆ 𝐴) |
6 | | fvelimab 6163 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 ∪ 𝐶) ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ (𝐵 ∪ 𝐶)) ↔ ∃𝑥 ∈ (𝐵 ∪ 𝐶)(𝐹‘𝑥) = 𝑦)) |
7 | 1, 5, 6 | syl2anc 691 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ (𝐵 ∪ 𝐶)) ↔ ∃𝑥 ∈ (𝐵 ∪ 𝐶)(𝐹‘𝑥) = 𝑦)) |
8 | | rexun 3755 |
. . . . 5
⊢
(∃𝑥 ∈
(𝐵 ∪ 𝐶)(𝐹‘𝑥) = 𝑦 ↔ (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 ∨ ∃𝑥 ∈ 𝐶 (𝐹‘𝑥) = 𝑦)) |
9 | 7, 8 | syl6bb 275 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ (𝐵 ∪ 𝐶)) ↔ (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 ∨ ∃𝑥 ∈ 𝐶 (𝐹‘𝑥) = 𝑦))) |
10 | | fvelimab 6163 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦)) |
11 | 10 | 3adant3 1074 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦)) |
12 | | fvelimab 6163 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 (𝐹‘𝑥) = 𝑦)) |
13 | 12 | 3adant2 1073 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 (𝐹‘𝑥) = 𝑦)) |
14 | 11, 13 | orbi12d 742 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → ((𝑦 ∈ (𝐹 “ 𝐵) ∨ 𝑦 ∈ (𝐹 “ 𝐶)) ↔ (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 ∨ ∃𝑥 ∈ 𝐶 (𝐹‘𝑥) = 𝑦))) |
15 | 9, 14 | bitr4d 270 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ (𝐵 ∪ 𝐶)) ↔ (𝑦 ∈ (𝐹 “ 𝐵) ∨ 𝑦 ∈ (𝐹 “ 𝐶)))) |
16 | | elun 3715 |
. . 3
⊢ (𝑦 ∈ ((𝐹 “ 𝐵) ∪ (𝐹 “ 𝐶)) ↔ (𝑦 ∈ (𝐹 “ 𝐵) ∨ 𝑦 ∈ (𝐹 “ 𝐶))) |
17 | 15, 16 | syl6bbr 277 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ (𝐵 ∪ 𝐶)) ↔ 𝑦 ∈ ((𝐹 “ 𝐵) ∪ (𝐹 “ 𝐶)))) |
18 | 17 | eqrdv 2608 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 “ (𝐵 ∪ 𝐶)) = ((𝐹 “ 𝐵) ∪ (𝐹 “ 𝐶))) |