Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniimadomf Structured version   Visualization version   GIF version

Theorem uniimadomf 9246
 Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. This version of uniimadom 9245 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.)
Hypotheses
Ref Expression
uniimadomf.1 𝑥𝐹
uniimadomf.2 𝐴 ∈ V
uniimadomf.3 𝐵 ∈ V
Assertion
Ref Expression
uniimadomf ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem uniimadomf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1830 . . 3 𝑧(𝐹𝑥) ≼ 𝐵
2 uniimadomf.1 . . . . 5 𝑥𝐹
3 nfcv 2751 . . . . 5 𝑥𝑧
42, 3nffv 6110 . . . 4 𝑥(𝐹𝑧)
5 nfcv 2751 . . . 4 𝑥
6 nfcv 2751 . . . 4 𝑥𝐵
74, 5, 6nfbr 4629 . . 3 𝑥(𝐹𝑧) ≼ 𝐵
8 fveq2 6103 . . . 4 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
98breq1d 4593 . . 3 (𝑥 = 𝑧 → ((𝐹𝑥) ≼ 𝐵 ↔ (𝐹𝑧) ≼ 𝐵))
101, 7, 9cbvral 3143 . 2 (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵 ↔ ∀𝑧𝐴 (𝐹𝑧) ≼ 𝐵)
11 uniimadomf.2 . . 3 𝐴 ∈ V
12 uniimadomf.3 . . 3 𝐵 ∈ V
1311, 12uniimadom 9245 . 2 ((Fun 𝐹 ∧ ∀𝑧𝐴 (𝐹𝑧) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
1410, 13sylan2b 491 1 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∈ wcel 1977  Ⅎwnfc 2738  ∀wral 2896  Vcvv 3173  ∪ cuni 4372   class class class wbr 4583   × cxp 5036   “ cima 5041  Fun wfun 5798  ‘cfv 5804   ≼ cdom 7839 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-ac2 9168 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-card 8648  df-acn 8651  df-ac 8822 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator