MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfilem3 Structured version   Visualization version   GIF version

Theorem unfilem3 8111
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 16-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
unfilem3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ≈ ((𝐴 +𝑜 𝐵) ∖ 𝐴))

Proof of Theorem unfilem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 6556 . . . 4 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (𝐴 +𝑜 𝐵) = (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵))
2 id 22 . . . 4 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → 𝐴 = if(𝐴 ∈ ω, 𝐴, ∅))
31, 2difeq12d 3691 . . 3 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → ((𝐴 +𝑜 𝐵) ∖ 𝐴) = ((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅)))
43breq2d 4595 . 2 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (𝐵 ≈ ((𝐴 +𝑜 𝐵) ∖ 𝐴) ↔ 𝐵 ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅))))
5 id 22 . . 3 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → 𝐵 = if(𝐵 ∈ ω, 𝐵, ∅))
6 oveq2 6557 . . . 4 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵) = (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)))
76difeq1d 3689 . . 3 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → ((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) = ((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)))
85, 7breq12d 4596 . 2 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (𝐵 ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝐵) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ↔ if(𝐵 ∈ ω, 𝐵, ∅) ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))))
9 peano1 6977 . . . 4 ∅ ∈ ω
109elimel 4100 . . 3 if(𝐵 ∈ ω, 𝐵, ∅) ∈ ω
11 ovex 6577 . . . 4 (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ∈ V
12 difexg 4735 . . . 4 ((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ∈ V → ((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ∈ V)
1311, 12ax-mp 5 . . 3 ((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ∈ V
149elimel 4100 . . . 4 if(𝐴 ∈ ω, 𝐴, ∅) ∈ ω
15 eqid 2610 . . . 4 (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝑥)) = (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝑥))
1614, 10, 15unfilem2 8110 . . 3 (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝑥)):if(𝐵 ∈ ω, 𝐵, ∅)–1-1-onto→((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))
17 f1oen2g 7858 . . 3 ((if(𝐵 ∈ ω, 𝐵, ∅) ∈ ω ∧ ((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)) ∈ V ∧ (𝑥 ∈ if(𝐵 ∈ ω, 𝐵, ∅) ↦ (if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 𝑥)):if(𝐵 ∈ ω, 𝐵, ∅)–1-1-onto→((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))) → if(𝐵 ∈ ω, 𝐵, ∅) ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅)))
1810, 13, 16, 17mp3an 1416 . 2 if(𝐵 ∈ ω, 𝐵, ∅) ≈ ((if(𝐴 ∈ ω, 𝐴, ∅) +𝑜 if(𝐵 ∈ ω, 𝐵, ∅)) ∖ if(𝐴 ∈ ω, 𝐴, ∅))
194, 8, 18dedth2h 4090 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ≈ ((𝐴 +𝑜 𝐵) ∖ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  c0 3874  ifcif 4036   class class class wbr 4583  cmpt 4643  1-1-ontowf1o 5803  (class class class)co 6549  ωcom 6957   +𝑜 coa 7444  cen 7838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-en 7842
This theorem is referenced by:  unfi  8112
  Copyright terms: Public domain W3C validator