MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifixp Structured version   Visualization version   GIF version

Theorem undifixp 7830
Description: Union of two projections of a cartesian product. (Contributed by FL, 7-Nov-2011.)
Assertion
Ref Expression
undifixp ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ X𝑥𝐴 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem undifixp
StepHypRef Expression
1 unexg 6857 . . 3 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → (𝐹𝐺) ∈ V)
213adant3 1074 . 2 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ V)
3 ixpfn 7800 . . . 4 (𝐹X𝑥𝐵 𝐶𝐹 Fn 𝐵)
4 ixpfn 7800 . . . . 5 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐺 Fn (𝐴𝐵))
5 3simpa 1051 . . . . . . . . 9 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵))
65ancomd 466 . . . . . . . 8 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐹 Fn 𝐵𝐺 Fn (𝐴𝐵)))
7 disjdif 3992 . . . . . . . 8 (𝐵 ∩ (𝐴𝐵)) = ∅
8 fnun 5911 . . . . . . . 8 (((𝐹 Fn 𝐵𝐺 Fn (𝐴𝐵)) ∧ (𝐵 ∩ (𝐴𝐵)) = ∅) → (𝐹𝐺) Fn (𝐵 ∪ (𝐴𝐵)))
96, 7, 8sylancl 693 . . . . . . 7 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐹𝐺) Fn (𝐵 ∪ (𝐴𝐵)))
10 undif 4001 . . . . . . . . . . 11 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
1110biimpi 205 . . . . . . . . . 10 (𝐵𝐴 → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
1211eqcomd 2616 . . . . . . . . 9 (𝐵𝐴𝐴 = (𝐵 ∪ (𝐴𝐵)))
13123ad2ant3 1077 . . . . . . . 8 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → 𝐴 = (𝐵 ∪ (𝐴𝐵)))
1413fneq2d 5896 . . . . . . 7 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → ((𝐹𝐺) Fn 𝐴 ↔ (𝐹𝐺) Fn (𝐵 ∪ (𝐴𝐵))))
159, 14mpbird 246 . . . . . 6 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐹𝐺) Fn 𝐴)
16153exp 1256 . . . . 5 (𝐺 Fn (𝐴𝐵) → (𝐹 Fn 𝐵 → (𝐵𝐴 → (𝐹𝐺) Fn 𝐴)))
174, 16syl 17 . . . 4 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐹 Fn 𝐵 → (𝐵𝐴 → (𝐹𝐺) Fn 𝐴)))
183, 17syl5com 31 . . 3 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐵𝐴 → (𝐹𝐺) Fn 𝐴)))
19183imp 1249 . 2 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) Fn 𝐴)
20 fndm 5904 . . . . . . . . . . . . . . 15 (𝐺 Fn (𝐴𝐵) → dom 𝐺 = (𝐴𝐵))
21 elndif 3696 . . . . . . . . . . . . . . 15 (𝑥𝐵 → ¬ 𝑥 ∈ (𝐴𝐵))
22 eleq2 2677 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵) = dom 𝐺 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥 ∈ dom 𝐺))
2322notbid 307 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵) = dom 𝐺 → (¬ 𝑥 ∈ (𝐴𝐵) ↔ ¬ 𝑥 ∈ dom 𝐺))
2423eqcoms 2618 . . . . . . . . . . . . . . . 16 (dom 𝐺 = (𝐴𝐵) → (¬ 𝑥 ∈ (𝐴𝐵) ↔ ¬ 𝑥 ∈ dom 𝐺))
25 ndmfv 6128 . . . . . . . . . . . . . . . 16 𝑥 ∈ dom 𝐺 → (𝐺𝑥) = ∅)
2624, 25syl6bi 242 . . . . . . . . . . . . . . 15 (dom 𝐺 = (𝐴𝐵) → (¬ 𝑥 ∈ (𝐴𝐵) → (𝐺𝑥) = ∅))
2720, 21, 26syl2im 39 . . . . . . . . . . . . . 14 (𝐺 Fn (𝐴𝐵) → (𝑥𝐵 → (𝐺𝑥) = ∅))
2827ralrimiv 2948 . . . . . . . . . . . . 13 (𝐺 Fn (𝐴𝐵) → ∀𝑥𝐵 (𝐺𝑥) = ∅)
29 elixp2 7798 . . . . . . . . . . . . . . 15 (𝐹X𝑥𝐵 𝐶 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐵 ∧ ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶))
3029simp3bi 1071 . . . . . . . . . . . . . 14 (𝐹X𝑥𝐵 𝐶 → ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶)
31 uneq2 3723 . . . . . . . . . . . . . . . . 17 ((𝐺𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐹𝑥) ∪ ∅))
32 un0 3919 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) ∪ ∅) = (𝐹𝑥)
33 eqtr 2629 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐹𝑥) ∪ ∅) ∧ ((𝐹𝑥) ∪ ∅) = (𝐹𝑥)) → ((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐹𝑥))
34 eleq1 2676 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐹𝑥) ∈ 𝐶 ↔ ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3534biimpd 218 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3635eqcoms 2618 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐹𝑥) → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3733, 36syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐹𝑥) ∪ ∅) ∧ ((𝐹𝑥) ∪ ∅) = (𝐹𝑥)) → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3831, 32, 37sylancl 693 . . . . . . . . . . . . . . . 16 ((𝐺𝑥) = ∅ → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3938com12 32 . . . . . . . . . . . . . . 15 ((𝐹𝑥) ∈ 𝐶 → ((𝐺𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
4039ral2imi 2931 . . . . . . . . . . . . . 14 (∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶 → (∀𝑥𝐵 (𝐺𝑥) = ∅ → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
4130, 40syl 17 . . . . . . . . . . . . 13 (𝐹X𝑥𝐵 𝐶 → (∀𝑥𝐵 (𝐺𝑥) = ∅ → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
4228, 41syl5com 31 . . . . . . . . . . . 12 (𝐺 Fn (𝐴𝐵) → (𝐹X𝑥𝐵 𝐶 → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
434, 42syl 17 . . . . . . . . . . 11 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐹X𝑥𝐵 𝐶 → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
4443impcom 445 . . . . . . . . . 10 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
45 fndm 5904 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵)
46 eldifn 3695 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝐵)
47 eleq2 2677 . . . . . . . . . . . . . . . . . 18 (𝐵 = dom 𝐹 → (𝑥𝐵𝑥 ∈ dom 𝐹))
4847notbid 307 . . . . . . . . . . . . . . . . 17 (𝐵 = dom 𝐹 → (¬ 𝑥𝐵 ↔ ¬ 𝑥 ∈ dom 𝐹))
49 ndmfv 6128 . . . . . . . . . . . . . . . . 17 𝑥 ∈ dom 𝐹 → (𝐹𝑥) = ∅)
5048, 49syl6bi 242 . . . . . . . . . . . . . . . 16 (𝐵 = dom 𝐹 → (¬ 𝑥𝐵 → (𝐹𝑥) = ∅))
5150eqcoms 2618 . . . . . . . . . . . . . . 15 (dom 𝐹 = 𝐵 → (¬ 𝑥𝐵 → (𝐹𝑥) = ∅))
5245, 46, 51syl2im 39 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐵 → (𝑥 ∈ (𝐴𝐵) → (𝐹𝑥) = ∅))
5352ralrimiv 2948 . . . . . . . . . . . . 13 (𝐹 Fn 𝐵 → ∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = ∅)
54 elixp2 7798 . . . . . . . . . . . . . . 15 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐴𝐵) ∧ ∀𝑥 ∈ (𝐴𝐵)(𝐺𝑥) ∈ 𝐶))
5554simp3bi 1071 . . . . . . . . . . . . . 14 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐴𝐵)(𝐺𝑥) ∈ 𝐶)
56 uneq1 3722 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) = (∅ ∪ (𝐺𝑥)))
57 uncom 3719 . . . . . . . . . . . . . . . . 17 (∅ ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅)
58 eqtr 2629 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑥) ∪ (𝐺𝑥)) = (∅ ∪ (𝐺𝑥)) ∧ (∅ ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅)) → ((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅))
59 un0 3919 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑥) ∪ ∅) = (𝐺𝑥)
60 eqtr 2629 . . . . . . . . . . . . . . . . . . 19 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅) ∧ ((𝐺𝑥) ∪ ∅) = (𝐺𝑥)) → ((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐺𝑥))
61 eleq1 2676 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐺𝑥) ∈ 𝐶 ↔ ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6261biimpd 218 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6362eqcoms 2618 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐺𝑥) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6460, 63syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅) ∧ ((𝐺𝑥) ∪ ∅) = (𝐺𝑥)) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6558, 59, 64sylancl 693 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑥) ∪ (𝐺𝑥)) = (∅ ∪ (𝐺𝑥)) ∧ (∅ ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅)) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6656, 57, 65sylancl 693 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) = ∅ → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6766com12 32 . . . . . . . . . . . . . . 15 ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6867ral2imi 2931 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (𝐴𝐵)(𝐺𝑥) ∈ 𝐶 → (∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = ∅ → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6955, 68syl 17 . . . . . . . . . . . . 13 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = ∅ → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
7053, 69syl5com 31 . . . . . . . . . . . 12 (𝐹 Fn 𝐵 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
713, 70syl 17 . . . . . . . . . . 11 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
7271imp 444 . . . . . . . . . 10 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
73 ralunb 3756 . . . . . . . . . 10 (∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶 ↔ (∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶 ∧ ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
7444, 72, 73sylanbrc 695 . . . . . . . . 9 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
7574ex 449 . . . . . . . 8 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
76 raleq 3115 . . . . . . . . 9 (𝐴 = (𝐵 ∪ (𝐴𝐵)) → (∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶 ↔ ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
7776imbi2d 329 . . . . . . . 8 (𝐴 = (𝐵 ∪ (𝐴𝐵)) → ((𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶) ↔ (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
7875, 77syl5ibr 235 . . . . . . 7 (𝐴 = (𝐵 ∪ (𝐴𝐵)) → (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
7978eqcoms 2618 . . . . . 6 ((𝐵 ∪ (𝐴𝐵)) = 𝐴 → (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
8010, 79sylbi 206 . . . . 5 (𝐵𝐴 → (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
8180com3l 87 . . . 4 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐵𝐴 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
82813imp 1249 . . 3 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
83 df-fn 5807 . . . . . . 7 (𝐺 Fn (𝐴𝐵) ↔ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)))
84 df-fn 5807 . . . . . . . . 9 (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
85 simpl 472 . . . . . . . . . . . . . . 15 ((Fun 𝐹 ∧ dom 𝐹 = 𝐵) → Fun 𝐹)
86 simpl 472 . . . . . . . . . . . . . . 15 ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → Fun 𝐺)
8785, 86anim12i 588 . . . . . . . . . . . . . 14 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵))) → (Fun 𝐹 ∧ Fun 𝐺))
88873adant3 1074 . . . . . . . . . . . . 13 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (Fun 𝐹 ∧ Fun 𝐺))
89 ineq12 3771 . . . . . . . . . . . . . . . 16 ((dom 𝐹 = 𝐵 ∧ dom 𝐺 = (𝐴𝐵)) → (dom 𝐹 ∩ dom 𝐺) = (𝐵 ∩ (𝐴𝐵)))
9089, 7syl6eq 2660 . . . . . . . . . . . . . . 15 ((dom 𝐹 = 𝐵 ∧ dom 𝐺 = (𝐴𝐵)) → (dom 𝐹 ∩ dom 𝐺) = ∅)
9190ad2ant2l 778 . . . . . . . . . . . . . 14 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵))) → (dom 𝐹 ∩ dom 𝐺) = ∅)
92913adant3 1074 . . . . . . . . . . . . 13 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅)
93 fvun 6178 . . . . . . . . . . . . 13 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺)‘𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)))
9488, 92, 93syl2anc 691 . . . . . . . . . . . 12 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → ((𝐹𝐺)‘𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)))
9594eleq1d 2672 . . . . . . . . . . 11 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
9695ralbidv 2969 . . . . . . . . . 10 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
97963exp 1256 . . . . . . . . 9 ((Fun 𝐹 ∧ dom 𝐹 = 𝐵) → ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
9884, 97sylbi 206 . . . . . . . 8 (𝐹 Fn 𝐵 → ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
9998com12 32 . . . . . . 7 ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → (𝐹 Fn 𝐵 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
10083, 99sylbi 206 . . . . . 6 (𝐺 Fn (𝐴𝐵) → (𝐹 Fn 𝐵 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
1014, 100syl 17 . . . . 5 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐹 Fn 𝐵 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
1023, 101syl5com 31 . . . 4 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
1031023imp 1249 . . 3 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
10482, 103mpbird 246 . 2 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → ∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶)
105 elixp2 7798 . 2 ((𝐹𝐺) ∈ X𝑥𝐴 𝐶 ↔ ((𝐹𝐺) ∈ V ∧ (𝐹𝐺) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶))
1062, 19, 104, 105syl3anbrc 1239 1 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  dom cdm 5038  Fun wfun 5798   Fn wfn 5799  cfv 5804  Xcixp 7794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-ixp 7795
This theorem is referenced by:  ptuncnv  21420  ptunhmeo  21421
  Copyright terms: Public domain W3C validator