Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifabs Structured version   Visualization version   GIF version

Theorem undifabs 3997
 Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.)
Assertion
Ref Expression
undifabs (𝐴 ∪ (𝐴𝐵)) = 𝐴

Proof of Theorem undifabs
StepHypRef Expression
1 undif3 3847 . 2 (𝐴 ∪ (𝐴𝐵)) = ((𝐴𝐴) ∖ (𝐵𝐴))
2 unidm 3718 . . 3 (𝐴𝐴) = 𝐴
32difeq1i 3686 . 2 ((𝐴𝐴) ∖ (𝐵𝐴)) = (𝐴 ∖ (𝐵𝐴))
4 difdif 3698 . 2 (𝐴 ∖ (𝐵𝐴)) = 𝐴
51, 3, 43eqtri 2636 1 (𝐴 ∪ (𝐴𝐵)) = 𝐴
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∖ cdif 3537   ∪ cun 3538 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545 This theorem is referenced by:  dfif5  4052  indifundif  28740
 Copyright terms: Public domain W3C validator