MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncf2 Structured version   Visualization version   GIF version

Theorem uncf2 16700
Description: Value of the uncurry functor on a morphism. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
uncfval.c (𝜑𝐷 ∈ Cat)
uncfval.d (𝜑𝐸 ∈ Cat)
uncfval.f (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
uncf1.a 𝐴 = (Base‘𝐶)
uncf1.b 𝐵 = (Base‘𝐷)
uncf1.x (𝜑𝑋𝐴)
uncf1.y (𝜑𝑌𝐵)
uncf2.h 𝐻 = (Hom ‘𝐶)
uncf2.j 𝐽 = (Hom ‘𝐷)
uncf2.z (𝜑𝑍𝐴)
uncf2.w (𝜑𝑊𝐵)
uncf2.r (𝜑𝑅 ∈ (𝑋𝐻𝑍))
uncf2.s (𝜑𝑆 ∈ (𝑌𝐽𝑊))
Assertion
Ref Expression
uncf2 (𝜑 → (𝑅(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑍, 𝑊⟩)𝑆) = ((((𝑋(2nd𝐺)𝑍)‘𝑅)‘𝑊)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑌), ((1st ‘((1st𝐺)‘𝑋))‘𝑊)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑍))‘𝑊))((𝑌(2nd ‘((1st𝐺)‘𝑋))𝑊)‘𝑆)))

Proof of Theorem uncf2
StepHypRef Expression
1 uncfval.g . . . . . . 7 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 uncfval.c . . . . . . 7 (𝜑𝐷 ∈ Cat)
3 uncfval.d . . . . . . 7 (𝜑𝐸 ∈ Cat)
4 uncfval.f . . . . . . 7 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
51, 2, 3, 4uncfval 16697 . . . . . 6 (𝜑𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
65fveq2d 6107 . . . . 5 (𝜑 → (2nd𝐹) = (2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))))
76oveqd 6566 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑍, 𝑊⟩) = (⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩))
87oveqd 6566 . . 3 (𝜑 → (𝑅(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑍, 𝑊⟩)𝑆) = (𝑅(⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩)𝑆))
9 df-ov 6552 . . . 4 (𝑅(⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩)𝑆) = ((⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)
10 eqid 2610 . . . . . 6 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
11 uncf1.a . . . . . 6 𝐴 = (Base‘𝐶)
12 uncf1.b . . . . . 6 𝐵 = (Base‘𝐷)
1310, 11, 12xpcbas 16641 . . . . 5 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
14 eqid 2610 . . . . . 6 ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)) = ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))
15 eqid 2610 . . . . . 6 ((𝐷 FuncCat 𝐸) ×c 𝐷) = ((𝐷 FuncCat 𝐸) ×c 𝐷)
16 funcrcl 16346 . . . . . . . . . 10 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
174, 16syl 17 . . . . . . . . 9 (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
1817simpld 474 . . . . . . . 8 (𝜑𝐶 ∈ Cat)
19 eqid 2610 . . . . . . . 8 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
2010, 18, 2, 191stfcl 16660 . . . . . . 7 (𝜑 → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
2120, 4cofucl 16371 . . . . . 6 (𝜑 → (𝐺func (𝐶 1stF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func (𝐷 FuncCat 𝐸)))
22 eqid 2610 . . . . . . 7 (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷)
2310, 18, 2, 222ndfcl 16661 . . . . . 6 (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
2414, 15, 21, 23prfcl 16666 . . . . 5 (𝜑 → ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func ((𝐷 FuncCat 𝐸) ×c 𝐷)))
25 eqid 2610 . . . . . 6 (𝐷 evalF 𝐸) = (𝐷 evalF 𝐸)
26 eqid 2610 . . . . . 6 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
2725, 26, 2, 3evlfcl 16685 . . . . 5 (𝜑 → (𝐷 evalF 𝐸) ∈ (((𝐷 FuncCat 𝐸) ×c 𝐷) Func 𝐸))
28 uncf1.x . . . . . 6 (𝜑𝑋𝐴)
29 uncf1.y . . . . . 6 (𝜑𝑌𝐵)
30 opelxpi 5072 . . . . . 6 ((𝑋𝐴𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
3128, 29, 30syl2anc 691 . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
32 uncf2.z . . . . . 6 (𝜑𝑍𝐴)
33 uncf2.w . . . . . 6 (𝜑𝑊𝐵)
34 opelxpi 5072 . . . . . 6 ((𝑍𝐴𝑊𝐵) → ⟨𝑍, 𝑊⟩ ∈ (𝐴 × 𝐵))
3532, 33, 34syl2anc 691 . . . . 5 (𝜑 → ⟨𝑍, 𝑊⟩ ∈ (𝐴 × 𝐵))
36 eqid 2610 . . . . 5 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
37 uncf2.r . . . . . . 7 (𝜑𝑅 ∈ (𝑋𝐻𝑍))
38 uncf2.s . . . . . . 7 (𝜑𝑆 ∈ (𝑌𝐽𝑊))
39 opelxpi 5072 . . . . . . 7 ((𝑅 ∈ (𝑋𝐻𝑍) ∧ 𝑆 ∈ (𝑌𝐽𝑊)) → ⟨𝑅, 𝑆⟩ ∈ ((𝑋𝐻𝑍) × (𝑌𝐽𝑊)))
4037, 38, 39syl2anc 691 . . . . . 6 (𝜑 → ⟨𝑅, 𝑆⟩ ∈ ((𝑋𝐻𝑍) × (𝑌𝐽𝑊)))
41 uncf2.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
42 uncf2.j . . . . . . 7 𝐽 = (Hom ‘𝐷)
4310, 11, 12, 41, 42, 28, 29, 32, 33, 36xpchom2 16649 . . . . . 6 (𝜑 → (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩) = ((𝑋𝐻𝑍) × (𝑌𝐽𝑊)))
4440, 43eleqtrrd 2691 . . . . 5 (𝜑 → ⟨𝑅, 𝑆⟩ ∈ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))
4513, 24, 27, 31, 35, 36, 44cofu2 16369 . . . 4 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ((((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)))
469, 45syl5eq 2656 . . 3 (𝜑 → (𝑅(⟨𝑋, 𝑌⟩(2nd ‘((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))⟨𝑍, 𝑊⟩)𝑆) = ((((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)))
478, 46eqtrd 2644 . 2 (𝜑 → (𝑅(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑍, 𝑊⟩)𝑆) = ((((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)))
4814, 13, 36, 21, 23, 31prf1 16663 . . . . . 6 (𝜑 → ((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩) = ⟨((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩), ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩)⟩)
4913, 20, 4, 31cofu1 16367 . . . . . . . 8 (𝜑 → ((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩) = ((1st𝐺)‘((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)))
5010, 13, 36, 18, 2, 19, 311stf1 16655 . . . . . . . . . 10 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩) = (1st ‘⟨𝑋, 𝑌⟩))
51 op1stg 7071 . . . . . . . . . . 11 ((𝑋𝐴𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
5228, 29, 51syl2anc 691 . . . . . . . . . 10 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
5350, 52eqtrd 2644 . . . . . . . . 9 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩) = 𝑋)
5453fveq2d 6107 . . . . . . . 8 (𝜑 → ((1st𝐺)‘((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)) = ((1st𝐺)‘𝑋))
5549, 54eqtrd 2644 . . . . . . 7 (𝜑 → ((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩) = ((1st𝐺)‘𝑋))
5610, 13, 36, 18, 2, 22, 312ndf1 16658 . . . . . . . 8 (𝜑 → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩) = (2nd ‘⟨𝑋, 𝑌⟩))
57 op2ndg 7072 . . . . . . . . 9 ((𝑋𝐴𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
5828, 29, 57syl2anc 691 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
5956, 58eqtrd 2644 . . . . . . 7 (𝜑 → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩) = 𝑌)
6055, 59opeq12d 4348 . . . . . 6 (𝜑 → ⟨((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑋, 𝑌⟩), ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑋, 𝑌⟩)⟩ = ⟨((1st𝐺)‘𝑋), 𝑌⟩)
6148, 60eqtrd 2644 . . . . 5 (𝜑 → ((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩) = ⟨((1st𝐺)‘𝑋), 𝑌⟩)
6214, 13, 36, 21, 23, 35prf1 16663 . . . . . 6 (𝜑 → ((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩) = ⟨((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑍, 𝑊⟩), ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑍, 𝑊⟩)⟩)
6313, 20, 4, 35cofu1 16367 . . . . . . . 8 (𝜑 → ((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑍, 𝑊⟩) = ((1st𝐺)‘((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩)))
6410, 13, 36, 18, 2, 19, 351stf1 16655 . . . . . . . . . 10 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩) = (1st ‘⟨𝑍, 𝑊⟩))
65 op1stg 7071 . . . . . . . . . . 11 ((𝑍𝐴𝑊𝐵) → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
6632, 33, 65syl2anc 691 . . . . . . . . . 10 (𝜑 → (1st ‘⟨𝑍, 𝑊⟩) = 𝑍)
6764, 66eqtrd 2644 . . . . . . . . 9 (𝜑 → ((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩) = 𝑍)
6867fveq2d 6107 . . . . . . . 8 (𝜑 → ((1st𝐺)‘((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩)) = ((1st𝐺)‘𝑍))
6963, 68eqtrd 2644 . . . . . . 7 (𝜑 → ((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑍, 𝑊⟩) = ((1st𝐺)‘𝑍))
7010, 13, 36, 18, 2, 22, 352ndf1 16658 . . . . . . . 8 (𝜑 → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑍, 𝑊⟩) = (2nd ‘⟨𝑍, 𝑊⟩))
71 op2ndg 7072 . . . . . . . . 9 ((𝑍𝐴𝑊𝐵) → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
7232, 33, 71syl2anc 691 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝑍, 𝑊⟩) = 𝑊)
7370, 72eqtrd 2644 . . . . . . 7 (𝜑 → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑍, 𝑊⟩) = 𝑊)
7469, 73opeq12d 4348 . . . . . 6 (𝜑 → ⟨((1st ‘(𝐺func (𝐶 1stF 𝐷)))‘⟨𝑍, 𝑊⟩), ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑍, 𝑊⟩)⟩ = ⟨((1st𝐺)‘𝑍), 𝑊⟩)
7562, 74eqtrd 2644 . . . . 5 (𝜑 → ((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩) = ⟨((1st𝐺)‘𝑍), 𝑊⟩)
7661, 75oveq12d 6567 . . . 4 (𝜑 → (((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩)) = (⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩))
7714, 13, 36, 21, 23, 31, 35, 44prf2 16665 . . . . 5 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ⟨((⟨𝑋, 𝑌⟩(2nd ‘(𝐺func (𝐶 1stF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩), ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)⟩)
7813, 20, 4, 31, 35, 36, 44cofu2 16369 . . . . . . 7 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐺func (𝐶 1stF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ((((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐺)((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)))
7953, 67oveq12d 6567 . . . . . . . 8 (𝜑 → (((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐺)((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩)) = (𝑋(2nd𝐺)𝑍))
8010, 13, 36, 18, 2, 19, 31, 351stf2 16656 . . . . . . . . . 10 (𝜑 → (⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑍, 𝑊⟩) = (1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩)))
8180fveq1d 6105 . . . . . . . . 9 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))‘⟨𝑅, 𝑆⟩))
82 fvres 6117 . . . . . . . . . 10 (⟨𝑅, 𝑆⟩ ∈ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩) → ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))‘⟨𝑅, 𝑆⟩) = (1st ‘⟨𝑅, 𝑆⟩))
8344, 82syl 17 . . . . . . . . 9 (𝜑 → ((1st ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))‘⟨𝑅, 𝑆⟩) = (1st ‘⟨𝑅, 𝑆⟩))
84 op1stg 7071 . . . . . . . . . 10 ((𝑅 ∈ (𝑋𝐻𝑍) ∧ 𝑆 ∈ (𝑌𝐽𝑊)) → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
8537, 38, 84syl2anc 691 . . . . . . . . 9 (𝜑 → (1st ‘⟨𝑅, 𝑆⟩) = 𝑅)
8681, 83, 853eqtrd 2648 . . . . . . . 8 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = 𝑅)
8779, 86fveq12d 6109 . . . . . . 7 (𝜑 → ((((1st ‘(𝐶 1stF 𝐷))‘⟨𝑋, 𝑌⟩)(2nd𝐺)((1st ‘(𝐶 1stF 𝐷))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 1stF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)) = ((𝑋(2nd𝐺)𝑍)‘𝑅))
8878, 87eqtrd 2644 . . . . . 6 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐺func (𝐶 1stF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ((𝑋(2nd𝐺)𝑍)‘𝑅))
8910, 13, 36, 18, 2, 22, 31, 352ndf2 16659 . . . . . . . 8 (𝜑 → (⟨𝑋, 𝑌⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑍, 𝑊⟩) = (2nd ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩)))
9089fveq1d 6105 . . . . . . 7 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ((2nd ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))‘⟨𝑅, 𝑆⟩))
91 fvres 6117 . . . . . . . 8 (⟨𝑅, 𝑆⟩ ∈ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩) → ((2nd ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))‘⟨𝑅, 𝑆⟩) = (2nd ‘⟨𝑅, 𝑆⟩))
9244, 91syl 17 . . . . . . 7 (𝜑 → ((2nd ↾ (⟨𝑋, 𝑌⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑍, 𝑊⟩))‘⟨𝑅, 𝑆⟩) = (2nd ‘⟨𝑅, 𝑆⟩))
93 op2ndg 7072 . . . . . . . 8 ((𝑅 ∈ (𝑋𝐻𝑍) ∧ 𝑆 ∈ (𝑌𝐽𝑊)) → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
9437, 38, 93syl2anc 691 . . . . . . 7 (𝜑 → (2nd ‘⟨𝑅, 𝑆⟩) = 𝑆)
9590, 92, 943eqtrd 2648 . . . . . 6 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = 𝑆)
9688, 95opeq12d 4348 . . . . 5 (𝜑 → ⟨((⟨𝑋, 𝑌⟩(2nd ‘(𝐺func (𝐶 1stF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩), ((⟨𝑋, 𝑌⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)⟩ = ⟨((𝑋(2nd𝐺)𝑍)‘𝑅), 𝑆⟩)
9777, 96eqtrd 2644 . . . 4 (𝜑 → ((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩) = ⟨((𝑋(2nd𝐺)𝑍)‘𝑅), 𝑆⟩)
9876, 97fveq12d 6109 . . 3 (𝜑 → ((((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)) = ((⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)‘⟨((𝑋(2nd𝐺)𝑍)‘𝑅), 𝑆⟩))
99 df-ov 6552 . . 3 (((𝑋(2nd𝐺)𝑍)‘𝑅)(⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)𝑆) = ((⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)‘⟨((𝑋(2nd𝐺)𝑍)‘𝑅), 𝑆⟩)
10098, 99syl6eqr 2662 . 2 (𝜑 → ((((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑋, 𝑌⟩)(2nd ‘(𝐷 evalF 𝐸))((1st ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))‘⟨𝑍, 𝑊⟩))‘((⟨𝑋, 𝑌⟩(2nd ‘((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))⟨𝑍, 𝑊⟩)‘⟨𝑅, 𝑆⟩)) = (((𝑋(2nd𝐺)𝑍)‘𝑅)(⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)𝑆))
101 eqid 2610 . . 3 (comp‘𝐸) = (comp‘𝐸)
102 eqid 2610 . . 3 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
10326fucbas 16443 . . . . 5 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
104 relfunc 16345 . . . . . 6 Rel (𝐶 Func (𝐷 FuncCat 𝐸))
105 1st2ndbr 7108 . . . . . 6 ((Rel (𝐶 Func (𝐷 FuncCat 𝐸)) ∧ 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
106104, 4, 105sylancr 694 . . . . 5 (𝜑 → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
10711, 103, 106funcf1 16349 . . . 4 (𝜑 → (1st𝐺):𝐴⟶(𝐷 Func 𝐸))
108107, 28ffvelrnd 6268 . . 3 (𝜑 → ((1st𝐺)‘𝑋) ∈ (𝐷 Func 𝐸))
109107, 32ffvelrnd 6268 . . 3 (𝜑 → ((1st𝐺)‘𝑍) ∈ (𝐷 Func 𝐸))
110 eqid 2610 . . 3 (⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩) = (⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)
11126, 102fuchom 16444 . . . . 5 (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸))
11211, 41, 111, 106, 28, 32funcf2 16351 . . . 4 (𝜑 → (𝑋(2nd𝐺)𝑍):(𝑋𝐻𝑍)⟶(((1st𝐺)‘𝑋)(𝐷 Nat 𝐸)((1st𝐺)‘𝑍)))
113112, 37ffvelrnd 6268 . . 3 (𝜑 → ((𝑋(2nd𝐺)𝑍)‘𝑅) ∈ (((1st𝐺)‘𝑋)(𝐷 Nat 𝐸)((1st𝐺)‘𝑍)))
11425, 2, 3, 12, 42, 101, 102, 108, 109, 29, 33, 110, 113, 38evlf2val 16682 . 2 (𝜑 → (((𝑋(2nd𝐺)𝑍)‘𝑅)(⟨((1st𝐺)‘𝑋), 𝑌⟩(2nd ‘(𝐷 evalF 𝐸))⟨((1st𝐺)‘𝑍), 𝑊⟩)𝑆) = ((((𝑋(2nd𝐺)𝑍)‘𝑅)‘𝑊)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑌), ((1st ‘((1st𝐺)‘𝑋))‘𝑊)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑍))‘𝑊))((𝑌(2nd ‘((1st𝐺)‘𝑋))𝑊)‘𝑆)))
11547, 100, 1143eqtrd 2648 1 (𝜑 → (𝑅(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑍, 𝑊⟩)𝑆) = ((((𝑋(2nd𝐺)𝑍)‘𝑅)‘𝑊)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑌), ((1st ‘((1st𝐺)‘𝑋))‘𝑊)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑍))‘𝑊))((𝑌(2nd ‘((1st𝐺)‘𝑋))𝑊)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cop 4131   class class class wbr 4583   × cxp 5036  cres 5040  Rel wrel 5043  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  ⟨“cs3 13438  Basecbs 15695  Hom chom 15779  compcco 15780  Catccat 16148   Func cfunc 16337  func ccofu 16339   Nat cnat 16424   FuncCat cfuc 16425   ×c cxpc 16631   1stF c1stf 16632   2ndF c2ndf 16633   ⟨,⟩F cprf 16634   evalF cevlf 16672   uncurryF cuncf 16674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-hom 15793  df-cco 15794  df-cat 16152  df-cid 16153  df-func 16341  df-cofu 16343  df-nat 16426  df-fuc 16427  df-xpc 16635  df-1stf 16636  df-2ndf 16637  df-prf 16638  df-evlf 16676  df-uncf 16678
This theorem is referenced by:  curfuncf  16701  uncfcurf  16702
  Copyright terms: Public domain W3C validator