Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrunop Structured version   Visualization version   GIF version

Theorem umgrunop 25787
 Description: The union of two multigraphs (with the same vertex set): If ⟨𝑉, 𝐸⟩ and ⟨𝑉, 𝐹⟩ are multigraphs, then ⟨𝑉, 𝐸 ∪ 𝐹⟩ is a multigraph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
umgrun.g (𝜑𝐺 ∈ UMGraph )
umgrun.h (𝜑𝐻 ∈ UMGraph )
umgrun.e 𝐸 = (iEdg‘𝐺)
umgrun.f 𝐹 = (iEdg‘𝐻)
umgrun.vg 𝑉 = (Vtx‘𝐺)
umgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
umgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
umgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UMGraph )

Proof of Theorem umgrunop
StepHypRef Expression
1 umgrun.g . 2 (𝜑𝐺 ∈ UMGraph )
2 umgrun.h . 2 (𝜑𝐻 ∈ UMGraph )
3 umgrun.e . 2 𝐸 = (iEdg‘𝐺)
4 umgrun.f . 2 𝐹 = (iEdg‘𝐻)
5 umgrun.vg . 2 𝑉 = (Vtx‘𝐺)
6 umgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
7 umgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
8 opex 4859 . . 3 𝑉, (𝐸𝐹)⟩ ∈ V
98a1i 11 . 2 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ V)
10 fvex 6113 . . . . 5 (Vtx‘𝐺) ∈ V
115, 10eqeltri 2684 . . . 4 𝑉 ∈ V
12 fvex 6113 . . . . . 6 (iEdg‘𝐺) ∈ V
133, 12eqeltri 2684 . . . . 5 𝐸 ∈ V
14 fvex 6113 . . . . . 6 (iEdg‘𝐻) ∈ V
154, 14eqeltri 2684 . . . . 5 𝐹 ∈ V
1613, 15unex 6854 . . . 4 (𝐸𝐹) ∈ V
1711, 16pm3.2i 470 . . 3 (𝑉 ∈ V ∧ (𝐸𝐹) ∈ V)
18 opvtxfv 25681 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
1917, 18mp1i 13 . 2 (𝜑 → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
20 opiedgfv 25684 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
2117, 20mp1i 13 . 2 (𝜑 → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
221, 2, 3, 4, 5, 6, 7, 9, 19, 21umgrun 25786 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UMGraph )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ∪ cun 3538   ∩ cin 3539  ∅c0 3874  ⟨cop 4131  dom cdm 5038  ‘cfv 5804  Vtxcvtx 25673  iEdgciedg 25674   UMGraph cumgr 25748 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-vtx 25675  df-iedg 25676  df-umgr 25750 This theorem is referenced by:  usgrunop  40418
 Copyright terms: Public domain W3C validator